Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of existence form of La3+ on the properties of the Bayan Obo Mine tailing glass ceramics

Chen Hua Li Bao-Wei Zhao Ming Zhang Xue-Feng Jia Xiao-Lin Du Yong-Sheng

Citation:

Effect of existence form of La3+ on the properties of the Bayan Obo Mine tailing glass ceramics

Chen Hua, Li Bao-Wei, Zhao Ming, Zhang Xue-Feng, Jia Xiao-Lin, Du Yong-Sheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Clarifying the effect of rare earth (RE) elements on the microstructure and properties of glass ceramics is technically and theoretically important for the further development. Thus the glass ceramics of the CaO-Al2O3-MgO-SiO2 with 04 wt% La2O3 are fabricated from Bayan Obo Mine tailing and fly ash by means of the conventional melting method. Effect of the existence form and the concentration variation of La3+ ions on the crystallization behavior, microstructure and properties, such as bending strength, chemical resistance and density of the glass ceramics, are investigated by DTA, XRD, SEM, TEM and EDS. Results show that both the glass transition and crystallization peak temperature of the samples shift to high temperatures with increasing La2O3 content. Augite [Ca(Mg, Al, Fe)(Si, Al)2O6] is the only crystalline phase in all the five samples. Augite crystals in the form of column are distributed uniformly within the residual glass, and their average size is below 100 nm. The crystallinity of augite has been effectively enhanced by the addition of 1 wt% of La2O3. Owing to the similar ion radius of La3+ and Ca2+, Ca2+ ions within augite have been partially substituted by La3+. Such a substitution can serve as one of the key factors to the enhancement of bending strength of the investigated material with 1 wt% of La2O3 because of the stronger bonding energy of La-O than Ca-O. With further increase of La2O3 from 1 to 4 wt%, the Ca3La6 (SiO4)6 secondary phase forms on the boundary between augite grains and residual glass phase in the form of irregular-shaped particles and this in turn hinders the growth of augite crystals. The crystallinity of augite will be decreased gradually since then. Meanwhile, the formation of this La-riched phase (Ca3La6(SiO4)6) may also prevent augite grains from growing through consuming Ca2+ and Si4+ ions which are two key constituent elements of augite grains. Therefore, there are two forms of La3+ ions in the glass ceramics developed from Bayan Obo Mine tailing: one is the substitution of Ca2+ ion by La3+ in augite crystalline phase, and the other is the forming of secondary crystalline phase La-riched Ca3La6 (SiO4)6. The glass ceramic sample with 1 wt% of La2O3 shows the optimum properties. Its density is 3.18 g/cm3, the bending strength is 198 MPa, and the weight loss in 20 wt% NaOH of this sample is lower than 1 wt%.
      Corresponding author: Li Bao-Wei, libaowei_imust@163.com
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2012CB722802), and the Inner Mongolia Science Technology Plan, China (Grant No. 414060901).
    [1]

    Hu Y B, Qiu J B, Zhou D C, Song Z G, Yang Z W, Wang R F, Jiao Q, Zhou D L 2014 Chin. Phys. B 23 24201

    [2]

    Ma C S, Jiao Q, Li L J, Zhou D C, Yang Z W, Song Z G, Qiu J B 2014 Chin. Phys. B 23 57801

    [3]

    Chen G H, Song J, Kang X L, Yuan C L, Zhou C R 2014 Mater. Lett. 136 302

    [4]

    Chen L, Yu C L, Hu L L, Chen W 2013 J. Non-Cryst. Solids 360 4

    [5]

    Zhang C, Zhao S L, Deng D G, Huang L H, Tian Y, Xu S Q 2014 Ceram. Int. 40 2737

    [6]

    Goel A, Tulyaganov D U, Kharton V V, Yaremchenko A A, Ferreira J M F 2008 Acta Mater. 56 3065

    [7]

    Dong J P, He F, Luo L, Chen W 2007 J. Inorg. Mater. 22 35 (in Chinese) [董继鹏, 何飞, 罗澜, 陈玮 2007 无机材料学报 22 35]

    [8]

    Xiao S G, Yang X L, Ding J W 2009 Acta Phys. Sin. 58 6858(in Chinese) [肖思国, 阳效良, 丁建文 2009 58 6858]

    [9]

    Meng J, Zhao L J, Yu H, Tang L Q, Liang Q, Yu X Y, Tang B Q, Su J, Xu J J 2005 Acta Phys. Sin. 54 1442(in Chinese) [孟婕, 赵丽娟, 余华, 唐莉勤, 梁沁, 禹宣伊, 唐柏权, 苏静, 许京军 2005 54 1442]

    [10]

    Li B W, Deng L B, Zhang X F, Jia X L 2013 J. Non-Cryst. Solids 380 103

    [11]

    Li B W, Du Y S, Zhang X F, Jia X L, Zhao M, Chen H 2013 Trans. Ind. Ceram. Soc. 72 1

    [12]

    Martn M I, Andreola F, Barbieri L, Bondioli F, Lancellotti I, Rincn J M, Romero M 2013 Ceram. Int. 39 2955

    [13]

    Rezvani M, Eftekhari-Yekta B, Solati-Hashjin M, Marghussian V K 2005 Ceram. Int. 31 75

    [14]

    Abdel-Hameed S A M, Elwan R L 2012 Mater. Res. Bull. 47 1233

    [15]

    Wang M T, Cheng J S, LI M, He F, Deng W 2012 Solid State Sci. 14 1233

    [16]

    Li B W, Du Y S, Zhang X F, Jia X L, Zhao M, Chen H 2014 J. Ceram. Process. Res. 15 325

    [17]

    Karamanov A, Pelino M, Salvo M, Metekovits I 2003 J. Eur. Ceram. Soc. 23 1609

    [18]

    Bernardo E, Dattoli A, Bonomo E, Esposito L, Rambaldi E, Tucci A 2011 Int. J. Appl. Ceram. Tec. 8 1153

    [19]

    Zhao T, Qin Y, Wang B, Yang J F 2015 Mater. Sci. Eng. A 620 399

    [20]

    Kokou L, Du J 2012 J. Non-Cryst. Solids 358 3408

  • [1]

    Hu Y B, Qiu J B, Zhou D C, Song Z G, Yang Z W, Wang R F, Jiao Q, Zhou D L 2014 Chin. Phys. B 23 24201

    [2]

    Ma C S, Jiao Q, Li L J, Zhou D C, Yang Z W, Song Z G, Qiu J B 2014 Chin. Phys. B 23 57801

    [3]

    Chen G H, Song J, Kang X L, Yuan C L, Zhou C R 2014 Mater. Lett. 136 302

    [4]

    Chen L, Yu C L, Hu L L, Chen W 2013 J. Non-Cryst. Solids 360 4

    [5]

    Zhang C, Zhao S L, Deng D G, Huang L H, Tian Y, Xu S Q 2014 Ceram. Int. 40 2737

    [6]

    Goel A, Tulyaganov D U, Kharton V V, Yaremchenko A A, Ferreira J M F 2008 Acta Mater. 56 3065

    [7]

    Dong J P, He F, Luo L, Chen W 2007 J. Inorg. Mater. 22 35 (in Chinese) [董继鹏, 何飞, 罗澜, 陈玮 2007 无机材料学报 22 35]

    [8]

    Xiao S G, Yang X L, Ding J W 2009 Acta Phys. Sin. 58 6858(in Chinese) [肖思国, 阳效良, 丁建文 2009 58 6858]

    [9]

    Meng J, Zhao L J, Yu H, Tang L Q, Liang Q, Yu X Y, Tang B Q, Su J, Xu J J 2005 Acta Phys. Sin. 54 1442(in Chinese) [孟婕, 赵丽娟, 余华, 唐莉勤, 梁沁, 禹宣伊, 唐柏权, 苏静, 许京军 2005 54 1442]

    [10]

    Li B W, Deng L B, Zhang X F, Jia X L 2013 J. Non-Cryst. Solids 380 103

    [11]

    Li B W, Du Y S, Zhang X F, Jia X L, Zhao M, Chen H 2013 Trans. Ind. Ceram. Soc. 72 1

    [12]

    Martn M I, Andreola F, Barbieri L, Bondioli F, Lancellotti I, Rincn J M, Romero M 2013 Ceram. Int. 39 2955

    [13]

    Rezvani M, Eftekhari-Yekta B, Solati-Hashjin M, Marghussian V K 2005 Ceram. Int. 31 75

    [14]

    Abdel-Hameed S A M, Elwan R L 2012 Mater. Res. Bull. 47 1233

    [15]

    Wang M T, Cheng J S, LI M, He F, Deng W 2012 Solid State Sci. 14 1233

    [16]

    Li B W, Du Y S, Zhang X F, Jia X L, Zhao M, Chen H 2014 J. Ceram. Process. Res. 15 325

    [17]

    Karamanov A, Pelino M, Salvo M, Metekovits I 2003 J. Eur. Ceram. Soc. 23 1609

    [18]

    Bernardo E, Dattoli A, Bonomo E, Esposito L, Rambaldi E, Tucci A 2011 Int. J. Appl. Ceram. Tec. 8 1153

    [19]

    Zhao T, Qin Y, Wang B, Yang J F 2015 Mater. Sci. Eng. A 620 399

    [20]

    Kokou L, Du J 2012 J. Non-Cryst. Solids 358 3408

  • [1] He Xiao-Xun, Li Bing-Sheng, Liu Rui, Zhang Tong-Min, Cao Xing-Zhong, Chen Li-Ming, Xu Shuai. Effect of Ti content on preparation and properties of TiB2-SiC-Ti materials. Acta Physica Sinica, 2022, 71(19): 192801. doi: 10.7498/aps.71.20220530
    [2] Chen Jing-Jing, Qiu Xiao-Lin, Li Ke, Zhou Dan, Yuan Jun-Jun. Mechanical performance analysis of nanocrystalline CoNiCrFeMn high entropy alloy: atomic simulation method. Acta Physica Sinica, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [3] Li Wen-Hao, Xie Yu-Qing, Shi Hai-Zheng, Lu Peng-Fei, Ren Jing. Mechanisms of rare earth ion distribution in fluorosilicate glass containing KMnF3 nanocrystal. Acta Physica Sinica, 2022, 71(8): 084205. doi: 10.7498/aps.71.20211953
    [4] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [5] Shao Yu-Fei, Meng Fan-Shun, Li Jiu-Hui, Zhao Xing. Molecular dynamics simulations for tensile behaviors of mono-layer MoS2 with twin boundary. Acta Physica Sinica, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [6] Yi Jun. Fabrications and mechanical behaviors of amorphous fibers. Acta Physica Sinica, 2017, 66(17): 178102. doi: 10.7498/aps.66.178102
    [7] Deng Shi-Jie, Zhao Yu-Hong, Hou Hua, Wen Zhi-Qin, Han Pei-De. Structural, mechanical and thermodynamic properties of Ti2AlX (X= C, N) at high pressure. Acta Physica Sinica, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [8] Ma Bing-Yang, Zhang An-Ming, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Amorphizing and mechanical properties of co-sputtered Al-Zr alloy films. Acta Physica Sinica, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [9] Liu Xue-Mei, Liu Guo-Quan, Li Ding-Peng, Wang Hai-Bin, Song Xiao-Yan. Preparation and properties of polycrystalline and nanocrystalline Sm3Co alloys. Acta Physica Sinica, 2014, 63(9): 098102. doi: 10.7498/aps.63.098102
    [10] Yu Li-Hua, Ma Bing-Yang, Cao Jun, Xu Jun-Hua. Structures, mechanical and tribological properties of (Zr,V)N composite films. Acta Physica Sinica, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [11] Ma Hong-Ping, Liu Ping, Yang Qing-Hua, Deng De-Gang. Broad band infrared optical properties of Cr4+-doped Li1.14Zn1.43SiO4 transparent glass-ceramics. Acta Physica Sinica, 2013, 62(17): 177801. doi: 10.7498/aps.62.177801
    [12] Wang Ying, Lu Tie-Cheng, Wang Yue-Zhong, Yue Shun-Li, Qi Jian-Qi, Pan Lei. Investigation of the electronic and mechanical properties of Al2O3-AlN solid solution by virtual crystal approximation. Acta Physica Sinica, 2012, 61(16): 167101. doi: 10.7498/aps.61.167101
    [13] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [14] Yu Wei-Yang, Tang Bi-Yu, Peng Li-Ming, Ding Wen-Jiang. Electronic structure and mechanical properties of α-Mg3Sb2. Acta Physica Sinica, 2009, 58(13): 216-S223. doi: 10.7498/aps.58.216
    [15] Zhang Yue-Pin, Xia Hai-Ping, Zhang Xin-Min, Wang Jin-Hao, Zhang Jian-Li, Jiang Chun. Fluorescence of Er, Yb: YAG glass-ceramics. Acta Physica Sinica, 2007, 56(7): 4207-4212. doi: 10.7498/aps.56.4207
    [16] Wang Li-Qun, Wang Ming-Xia, Li De-Jun, Yang Jin, Yu Da-Shu, Su Jie. Effect of N2 partial pressure on the defect properties and mechanical behaviors of nanoscale ZrN/WN multilayers. Acta Physica Sinica, 2007, 56(6): 3435-3439. doi: 10.7498/aps.56.3435
    [17] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [18] Yu Hua, Sun Jian, Liu Bao-Rong, Song Jie, Zhao Li-Juan, Xu Jing-Jun. Eu3+ luminescence in neoceramic glass as ion microprobe. Acta Physica Sinica, 2006, 55(11): 6152-6156. doi: 10.7498/aps.55.6152
    [19] Li Teng, Li Wei, Pan Wei, Li Xiu-Mei. Effect of microstructure on the mechanical properties of Fe45—50 Cr30—35Co20—25Mo0—4Zr0—2 alloy. Acta Physica Sinica, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
    [20] Wei Lun, Mei Fang-Hua, Shao Nan, Dong Yun-Shan, Li Ge-Yang. The coherent growth and mechanical properties of non-isostructural TiN/TiB2 nanomultilayers. Acta Physica Sinica, 2005, 54(10): 4846-4851. doi: 10.7498/aps.54.4846
Metrics
  • Abstract views:  6128
  • PDF Downloads:  174
  • Cited By: 0
Publishing process
  • Received Date:  09 April 2015
  • Accepted Date:  04 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回
Baidu
map