-
The top-seeded solution growth (TSSG) method is a critical technique for growing low-defect and high-quality silicon carbide (SiC) single crystals. A comprehensive numerical analysis model including induction heating, heat and mass transfer was developed for the growth of 6-inch SiC single crystals. The coupling effects of Lorentz force, centrifugal force, thermal buoyancy force and surface tension on the solution flow were considered, and the effects of crystal rotation speed on the velocity field, temperature field, carbon concentration field, crystal growth rate and carbon dissolution and precipitation on the crucible wall were systematically investigated. The results indicate that the Lorentz force in the solution results in a more complex flow field at low crystal rotation speeds. The crystal rotation speed should be controlled within the appropriate range to ensure that the carbon concentration distribution beneath the growth interface determined by the transport mode is coordinated with that at the growth interface determined by the temperature, which is beneficial for the uniform and high growth rate of SiC single crystals. Low rotation speeds reduce the growth rate of SiC single crystals, while high rotation speeds lead to a decrease in radial uniformity of growth rate. At the rotation speed of 25 rpm, the average growth rate of SiC single crystals is higher and the radial distribution uniformity is better. Further analysis is conducted on the dissolution and precipitation of carbon at the solution-crucible interface, and the regions where the crucible wall dissolves quickly and where SiC polycrystalline particles are generated are located. The transport directions of polycrystalline particles are predicted based on the velocity field. The research results provide a scientific basis for the growth of 6-inch SiC single crystals by TSSG method.
-
Keywords:
- TSSG /
- Silicon carbide single crystal /
- Crystal rotation /
- Numerical simulation
-
[1] Matsunami H, Kimoto T 1997 Mater. Sci. Eng. R-Rep. 20125
[2] Meyer C, Philip P 2005 Cryst. Growth Des. 51145
[3] Liu D J, Zhou F, Chen S Y, Hu Z L 2023 Acta Phys. Sin. 72267(in Chinese) [刘东静, 周福, 陈帅阳, 胡志亮2023 Acta Phys. Sin. 72267]
[4] Yang N J, Song B, Wang W J, Li H 2022 Crystengcomm 243475
[5] Kimoto T 2016 Prog. Cryst. Growth Charact. Mater. 62329
[6] Xiao S Y, Harada S, Murayama K, Ujihara T 2016 Cryst. Growth Des. 165136
[7] Ujihara T, Maekawa R, Tanaka R, Sasaki K, Kuroda K, Takeda Y 2008 J. Cryst. Growth 3101438
[8] Wang G B, Sheng D, Li H, Zhang Z S, Guo L L, Guo Z N, Yuan W X, Wang W J, Chen X L 2023 Crystengcomm 25560
[9] Umezaki T, Koike D, Horio A, Harada S, Ujihara T 201415th International Conference on Silicon Carbide and Related Materials (ICSCRM) Miyazaki, JAPAN, 2014 p63-66
[10] Dang Y F, Zhu C, Ikumi M, Takaishi M, Yu W C, Huang W, Liu X B, Kutsukake K, Harada S, Tagawa M, Ujihara T 2021 Crystengcomm 231982
[11] Yamamoto T, Okano Y, Ujihara T, Dost S 2017 J. Cryst. Growth 47075
[12] Umezaki T, Koike D, Harada S, Ujihara T 2016 Jpn. J. Appl. Phys. 551256015
[13] Mercier F, Dedulle J M, Chaussende D, Pons M 2010 J. Cryst. Growth 312155
[14] Ha M T, Shin Y J, Lee M H, Kim C J, Jeong S M 2018 Phys. Status Solidi A-Appl. Mat. 21517010179
[15] Kusunoki K, Kishida Y, Seki K 2019 Mater. Sci. Forum (Switzerland) 96385
[16] Ha M T, Shin Y J, Bae S Y, Park S Y, Jeong S M 2019 J. Korean Ceram. Soc. 56589
[17] Su Hun C, Young Gon K, Yun Ji S, Seong Min J, Myung Hyun L, Chae Young L, Jeong Min C, Mi Seon P, Yeon Suk J, Won Jae L 2018 Mater. Sci. Forum (Switzerland) 92427
[18] Liu B T, Yu Y, Tang X, Gao B 2020 J. Cryst. Growth 5331254066
[19] Yoon J Y, Lee M H, Kim Y, Seo W S, Shul Y G, Lee W J, Jeong S M 2017 Jpn. J. Appl. Phys. 560655014
[20] Li F C, He L, Yan Z Y, Qi X F, Ma W C, Chen J L, Xu Y K, Hu Z G 2023 J. Cryst. Growth 6071271127
[21] Sui Z R, Xu L B, Cui C, Wang R, Pi X D, Yang D R, Han X F 2024 Crystengcomm 261022
[22] Fujii K, Takei K, Aoshima M, Senguttuvan N, Hiratani M, Ujihara T, Matsumoto Y, Kato T, Kurashige K, Okumura H 2015 Mater. Sci. Forum (Switzerland) 821-82335
[23] Liu Y H, Li M Y, Yan Z Y, Qi X F, Ma W C, Chen J L, Xu Y K, Hu Z G 2024 J. Cryst. Growth 6431278018
[24] Mercier F, Nishizawa S 20118th European Conference on Silicon Carbide and Related Materials Sundvolden Conf Ctr, Oslo, NORWAY, Aug 29-Sep 02 p32-35
[25] Ariyawong K, Dedulle J M, Chaussende D 201415th International Conference on Silicon Carbide and Related Materials (ICSCRM) Miyazaki, JAPAN, Sep 29-Oct 04 p71-74
[26] Mercier F, Nishizawa S 2013 J. Cryst. Growth 36299
[27] Wang L, Horiuchi T, Sekimoto A, Okano Y, Ujihara T, Dost S 2018 J. Cryst. Growth 498140
[28] Ha M T, Lich L V, Shin Y J, Bae S Y, Lee M H, Jeong S M 2020 Materials 1365110
[29] Wang L, Takehara Y, Sekimoto A, Okano Y, Ujihara T, Dost S 2020 Crystals 1011112
[30] Li Z Y, Yang Y, Wang J L, Luo J P, Liu L J 2024 Proceedings of the 11th International Workshop on Modeling in Crystal Growth, ROMANIA, September 22-25, p573198
[31] Weiss J, Csendes Z J 1982 Ieee Transactions on Power Apparatus and Systems 1013796
[32] Tavakoli M H 2008 Cryst. Growth Des. 8483
[33] Lefebure J, Dedulle J M, Ouisse T, Chaussende D 2012 Cryst. Growth Des. 12909
[34] Liu B T, Yu Y, Tang X, Gao B 2019 J. Cryst. Growth 527125248
[35] Hayashi Y, Mitani T, Komatsu N, Kato T, Okumura H 2019 J. Cryst. Growth 523125151
Metrics
- Abstract views: 19
- PDF Downloads: 1
- Cited By: 0