搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颗粒分层过程三维离散元法模拟研究

赵啦啦 刘初升 闫俊霞 徐志鹏

引用本文:
Citation:

颗粒分层过程三维离散元法模拟研究

赵啦啦, 刘初升, 闫俊霞, 徐志鹏

Numerical simulation on segregation process of particles using 3D discrete element method

Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Xu Zhi-Peng
PDF
导出引用
  • 采用软球干接触模型对球形及非球形颗粒的分层过程进行了三维离散元法模拟研究,从颗粒间作用力、转动力矩和能量变化的角度分析了颗粒分层机理,讨论了颗粒的粒度比对分层速度的影响规律.结果表明,分层过程中,大颗粒比小颗粒活跃,非球颗粒由于具有较高的动能而比球颗粒活跃,在一定程度上弥补了颗粒形状对分层过程的影响.大颗粒间的平均法向、切向作用力、平均力矩及平均动能均大于小颗粒.颗粒分层速度随着粒度比的增加而显著增大,当粒度比大于临界粒度比3时,分层速度的增幅减缓.
    Basing on dry contact model of soft spheres the segregation processes of spherical and non-spherical particles were simulated using threes-dimensional discrete element methods(DEM). Particle segregation mechanism was analyzed in view of force, torque and energy conversion between particles. Influence of segregation speed affected by particle size ratio was also discussed. The result shows that large particles are more active than small ones in segregation process, and non-spherical particles have higher energy, which makes up the influence of particle shape to segregation process to some extent, are more active than spherical particles. Average normal force, tangential force between large particles, their torque and kinetic energy are all greater than those of small particles. Particle segregation speed increases significantly with the increasing of size ratio. When the size ratio is greater than the critical value 3, the amplitude of increase in segregation speed will be slowed down.
    • 基金项目: 国家自然科学基金(批准号:50574091,50774084),江苏省“333工程”科研基金和煤炭加工与高效洁净利用教育部重点实验室开放基金(批准号:CPEUKF 08-02)资助的课题.
    [1]

    [1]Jiang Z H, Wang Y Y, Wu J 2006 Acta Phys. Sin. 55 4748 (in Chinese)[姜泽辉、王运鹰、吴晶 2006 55 4748]

    [2]

    [2]Liang X W, Li L S, Hou Z G, Lü Z, Yang L, Sun G, Shi Q F 2008 Acta Phys. Sin.57 2300 (in Chinese)[梁宣文、李粮生、侯兆国、吕震、杨雷、孙刚、史庆藩 2008 57 2300]

    [3]

    [3]Zhao Y M, Zhang S G, Jiao H G, Tie Z X 2006 J. China Univ. of Mining & Tech.35 586 (in Chinese)[赵跃民、张曙光、焦红光、铁占续 2006 中国矿业大学学报 35 586]

    [4]

    [4]Jiao H G, Zhao Y M, Wang Q Q 2006 J. China Univ. of Mining & Tech. (English Edition) 16 137

    [5]

    [5]Yin S R 1999 Ph. D. Dissertation (Xuzhou: China University of Mining &Technology) (in Chinese)[尹守仁 1999博士学位论文 (徐州:中国矿业大学)]

    [6]

    [6]Xu Y, Shun Q C, Zhang L, Huang W B 2003 Advances in Mechanics 33 251 (in Chinese)[徐泳、孙其诚、张凌、黄文彬 2003 力学进展 33 251]

    [7]

    [7]Zhu H P, Zhou Z Y, Yang R Y, Yu A B 2007 Chemical Engineering Science 62 3378

    [8]

    [8]Zhu H P, Zhou Z Y, Yang R Y, Yu A B 2008 Chemical Engineering Science 63 5728

    [9]

    [9]Cleary P W 2008 Powder Technology 179 144

    [10]

    ]Fraige F Y, Langston P A, Chen G Z 2008 Powder Technology 186 224

    [11]

    ]Cleary P W, Sawley M L 2002 Applied Mathematical Modelling 26 89

    [12]

    ]Liffman K, Metcalfe G, Cleary P W 1997 Physical Review Letters 79 4574

    [13]

    ]Cleary P W 1998 TASK Quarterly Journal 2 385

    [14]

    ]Zhao Y Z, Jiang M Q, Zheng J 2009 Acta Phys. Sin. 58 1812 (in Chinese)[赵永志、江茂强、郑津 2009 58 1812]

    [15]

    ]Langston P A, Awamleh M A, Fraige F Y, Asmar B N 2004 Chemical Engineering Science 59 425

    [16]

    ]Oda M, Iwashita K, Kakiuchi T 1997 Importance of particle rotation in the mechanics of granular materials (Rotterdam: Balkema) p207

    [17]

    ]Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819 (in Chinese)[赵永志、江茂强、徐平、郑津洋 2009 58 1819]

    [18]

    ]Zhao Y Z, Cheng Y 2008 Acta Phys. Sin. 57 322 (in Chinese)[赵永志、程易 2008 57 322]

    [19]

    ]Rosato A, Prinz F,Monte Carlo 1986 Powder Technology 49 59

    [20]

    ]Rosato A D, Lan Y, wang D T 1991 Powder Technology 66 149

  • [1]

    [1]Jiang Z H, Wang Y Y, Wu J 2006 Acta Phys. Sin. 55 4748 (in Chinese)[姜泽辉、王运鹰、吴晶 2006 55 4748]

    [2]

    [2]Liang X W, Li L S, Hou Z G, Lü Z, Yang L, Sun G, Shi Q F 2008 Acta Phys. Sin.57 2300 (in Chinese)[梁宣文、李粮生、侯兆国、吕震、杨雷、孙刚、史庆藩 2008 57 2300]

    [3]

    [3]Zhao Y M, Zhang S G, Jiao H G, Tie Z X 2006 J. China Univ. of Mining & Tech.35 586 (in Chinese)[赵跃民、张曙光、焦红光、铁占续 2006 中国矿业大学学报 35 586]

    [4]

    [4]Jiao H G, Zhao Y M, Wang Q Q 2006 J. China Univ. of Mining & Tech. (English Edition) 16 137

    [5]

    [5]Yin S R 1999 Ph. D. Dissertation (Xuzhou: China University of Mining &Technology) (in Chinese)[尹守仁 1999博士学位论文 (徐州:中国矿业大学)]

    [6]

    [6]Xu Y, Shun Q C, Zhang L, Huang W B 2003 Advances in Mechanics 33 251 (in Chinese)[徐泳、孙其诚、张凌、黄文彬 2003 力学进展 33 251]

    [7]

    [7]Zhu H P, Zhou Z Y, Yang R Y, Yu A B 2007 Chemical Engineering Science 62 3378

    [8]

    [8]Zhu H P, Zhou Z Y, Yang R Y, Yu A B 2008 Chemical Engineering Science 63 5728

    [9]

    [9]Cleary P W 2008 Powder Technology 179 144

    [10]

    ]Fraige F Y, Langston P A, Chen G Z 2008 Powder Technology 186 224

    [11]

    ]Cleary P W, Sawley M L 2002 Applied Mathematical Modelling 26 89

    [12]

    ]Liffman K, Metcalfe G, Cleary P W 1997 Physical Review Letters 79 4574

    [13]

    ]Cleary P W 1998 TASK Quarterly Journal 2 385

    [14]

    ]Zhao Y Z, Jiang M Q, Zheng J 2009 Acta Phys. Sin. 58 1812 (in Chinese)[赵永志、江茂强、郑津 2009 58 1812]

    [15]

    ]Langston P A, Awamleh M A, Fraige F Y, Asmar B N 2004 Chemical Engineering Science 59 425

    [16]

    ]Oda M, Iwashita K, Kakiuchi T 1997 Importance of particle rotation in the mechanics of granular materials (Rotterdam: Balkema) p207

    [17]

    ]Zhao Y Z, Jiang M Q, Xu P, Zheng J Y 2009 Acta Phys. Sin. 58 1819 (in Chinese)[赵永志、江茂强、徐平、郑津洋 2009 58 1819]

    [18]

    ]Zhao Y Z, Cheng Y 2008 Acta Phys. Sin. 57 322 (in Chinese)[赵永志、程易 2008 57 322]

    [19]

    ]Rosato A, Prinz F,Monte Carlo 1986 Powder Technology 49 59

    [20]

    ]Rosato A D, Lan Y, wang D T 1991 Powder Technology 66 149

  • [1] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟.  , 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [2] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟.  , 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [3] 危卫, 张力元, 顾兆林. 工业中粉体颗粒的荷电机理及数值模拟方法.  , 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [4] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究.  , 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [5] 张向东, 陈虹, 王磊, 赵志高, 赵爱国. 圆柱形分层五模材料声学隐身衣的理论与数值分析.  , 2015, 64(13): 134303. doi: 10.7498/aps.64.134303
    [6] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟.  , 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [7] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动.  , 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [8] 吴迪平, 李星祥, 秦勤, 管奔, 臧勇. 离散颗粒层被横向推移过程中的力学行为研究.  , 2014, 63(9): 098201. doi: 10.7498/aps.63.098201
    [9] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究.  , 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [10] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究.  , 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [11] 吴宇航, 郑宁, 文平平, 李粮生, 史庆藩, 孙刚. 准二维二元混合颗粒动态循环反转分层的体积效应.  , 2011, 60(2): 024501. doi: 10.7498/aps.60.024501
    [12] 朱昌盛, 王军伟, 王智平, 冯力. 受迫流动下的枝晶生长相场法模拟研究.  , 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [13] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟.  , 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [14] 钱仙妹, 朱文越, 饶瑞中. 非均匀湍流路径上光传播数值模拟的相位屏分布.  , 2009, 58(9): 6633-6639. doi: 10.7498/aps.58.6633
    [15] 赵永志, 江茂强, 郑津洋. 巴西果效应分离过程的计算颗粒力学模拟研究.  , 2009, 58(3): 1812-1818. doi: 10.7498/aps.58.1812
    [16] 钟文镇, 何克晶, 周照耀, 夏伟, 李元元. 颗粒离散元模拟中的阻尼系数标定.  , 2009, 58(8): 5155-5161. doi: 10.7498/aps.58.5155
    [17] 赵永志, 程 易. 水平滚筒内二元颗粒体系径向分离模式的数值模拟研究.  , 2008, 57(1): 322-328. doi: 10.7498/aps.57.322
    [18] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟.  , 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [19] 梁子长, 金亚秋. 非均匀散射层矢量辐射传输(VRT)方程高阶散射解的迭代法.  , 2003, 52(2): 247-255. doi: 10.7498/aps.52.247
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷.  , 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  9679
  • PDF下载量:  1232
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-12
  • 修回日期:  2009-06-29
  • 刊出日期:  2010-03-15

/

返回文章
返回
Baidu
map