Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of variable-time-period harmonic balance method to periodic unsteady vortex shedding

Chai Zhen-Xia Liu Wei Yang Xiao-Liang Zhou Yun-Long

Citation:

Application of variable-time-period harmonic balance method to periodic unsteady vortex shedding

Chai Zhen-Xia, Liu Wei, Yang Xiao-Liang, Zhou Yun-Long
PDF
HTML
Get Citation
  • The harmonic balance method (HBM) is an efficient frequency-domain approach to computing periodically unsteady flows. The basic principle of this method is to decompose the flow variables into a Fourier series, and transform the unsteady flow into several steady problems coupled by a spectral time-derivative operator, from which the whole time history of a complete unsteady periodic flow can be reconstructed. In the present work, we investigate the ability of the HBM to be used for modeling the periodic unsteady vortex shedding behind a bluff body at low Reynolds numbers via solving the unsteady incompressible Navier-Stokes equations. For the periodic problem where the time period T of the unsteadiness is unknown, a variable-time-period method based on residual gradients is used to compute the exact time period iteratively starting from an initial guess T0. By simulating the two-dimensional laminar flows over a circular cylinder and a square cylinder, the accuracy and efficiency of the HBM are investigated and the effects of different parameters on the final results are analyzed. Comparisons with the results of fixed-time-period HBM using a constant time period are also implemented. Three practical methods of optimization are used to iterate the time period, and the values of accuracy and efficiency of different methods are compared with each other. The results show that the HBM can accurately capture the complex nonlinear flow field physics with only three harmonics. The Strouhal frequency and mean drag coefficient each as a function of the Reynolds number agree well with existing experimental and computational data. For both test cases, the computational efficiency of HBM is higher than that from the traditional time-domain method. For the square cylinder test case, the HBM offers speedup rate up to nearly 18 times. The real time period of vortex shedding can be predicted by the gradient based variable-time-period method, and the final result is insensitive to search step λ. The calculation result is sensitive to the initial T0, and when such a variable is greater than a certain value, the result will converge to an approximate integer multiple of the real one. Therefore, it deserves further exploration on how to specify this initial condition. The shedding time periods computed by different optimization methods are converged to the same value. The computational efficiency from the FR conjugate gradient method and that from Newton method are both equivalent to that from the steepest descent method with the maximum search step λ = 100. Avoiding prescribing parameters such as the search step λ, the Newton method possesses higher application value in engineering calculation than the other two schemes.
      Corresponding author: Liu Wei, fishfather6525@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11502292, 11572348).
    [1]

    McMullen M, Jameson A, Alonso J 2006 AIAA J. 44 1428Google Scholar

    [2]

    Mosahebi A, Nadarajah S 2013 Comput. Fluids 75 140Google Scholar

    [3]

    Hall K C, Grawley E F 1989 AIAA J. 27 777Google Scholar

    [4]

    Zhang Z, Yang S, Chen P C 2012 J. Aircraft 49 922Google Scholar

    [5]

    Ning W, He L 1998 J. Turbomach. 120 508Google Scholar

    [6]

    Hall K C, Thomas J P, Clark W S 2002 AIAA J. 40 879Google Scholar

    [7]

    Ekici K, Hall K C 2007 AIAA J. 45 1047Google Scholar

    [8]

    McMullen M, Jameson A, Alonso J 2001 39th Aerospace Sciences Meeting and Exhibit Reno, NV, January 8−11, 2001 AIAA 2001-0152

    [9]

    Gopinath A, Jameson A 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10−13, 2005 AIAA 2005-1220

    [10]

    Rubino A, Pini M, Colonna P, Albring T, Nimmagadda S, Economon T, Alonso J 2018 J. Comput. Phys. 372 220Google Scholar

    [11]

    Lindblad D, Montero Villar G, Andersson N, Capitao Patrao A, Courty-Audren S K, Napias G 2018 AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 8−12, 2018 AIAA 2018-1004

    [12]

    Reddy T S R, Bakhle M 2009 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Denver, Colorado, August 2−5, 2009 AIAA 2009-5420

    [13]

    Cvijetic G, Jasak H 2018 AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 8−12, 2018 AIAA 2018-0833

    [14]

    Hall K C, Thomas J P, Ekici K, Voytovych D M 2003 33rd AIAA Fluid Dynamics Conference and Exhibit Orlando, Florida, June 23−26, 2003 AIAA 2003-3998

    [15]

    Hall K C, Ekici K, Thomas J P, Dowell E H 2013 Int. J. Comput. Fluid Dyn. 27 54

    [16]

    Lindblad D, Andersson N 2017 55th AIAA Aerospace Sciences Meeting Grapevine, Texas, January 9−13, 2017 AIAA 2017-1171

    [17]

    杜鹏程, 宁方飞 2017 航空动力学报 32 528

    Du P C, Ning F F 2017 Journal of Aerospace Power 32 528

    [18]

    Thomas J P, Custer C H, Dowell E H, Hall K C, Corre C 2013 AIAA J. 51 1374Google Scholar

    [19]

    Thomas J P, Custer C H, Dowell E H, Hall K C 19th AIAA Computational Fluid Dynamics San Antonio, Texas, June 22−25, 2009 AIAA 2009-4270

    [20]

    Guillaume D, Frédéric S, Guillaume P 2010 AIAA J. 48 788Google Scholar

    [21]

    Ekici K, Hall K C, Dowell E H 2008 J. Comput. Phys. 227 6206Google Scholar

    [22]

    Da Ronch A, Vallespin D, Ghoreyshi M, Badcock K J 2012 AIAA J. 50 470Google Scholar

    [23]

    Da Ronch A, McCracken A J, Badcock K J, Widhalm M, Campobasso M S 2013 J. Aircraft 50 694Google Scholar

    [24]

    Murman S M 2005 43rd AIAA Aerospace Sciences Meeting Reno, NV, January 10−13, 2005 AIAA 2005-0840

    [25]

    Hassan D, Sicot F 2011 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4−7, 2011 AIAA 2011-1242

    [26]

    陈琦, 陈坚强, 袁先旭, 谢昱飞 2014 力学学报 46 183Google Scholar

    Chen Q, Chen J Q, Yuan X X, Xie Y F 2014 Chinese Journal of Theoretical and Applied Mechanics 46 183Google Scholar

    [27]

    柴振霞, 刘伟, 刘绪, 杨小亮 2018 国防科技大学学报 40 30Google Scholar

    Chai Z X, Liu W, Liu X, Yang X L 2018 J. Nat. Univ. Defense Technol. 40 30Google Scholar

    [28]

    Clark E B, Ekici K, Beran P S 2014 44th AIAA Fluid Dynamics Conference Atlanta, GA, June 16−20, 2014 AIAA 2014-3323

    [29]

    Cvijetic G, Jasak H, Vukcevic V 2016 54th AIAA Aerospace Sciences Meetin San Diego, California, USA, January 4−8, 2016 AIAA 2006-0070

    [30]

    McMullen M, Jameson A, Alonso J J 2002 40th AIAA Aerospace Sciences Meeting & Exhibit Reno, NV, January 14−17, 2002 AIAA 2002-0120

    [31]

    Gopinath A K, Jameson A 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9−12, 2006 AIAA 2006-449

    [32]

    Spiker M A, Thomas J P, Hall K C, Kielb R E, Dowell E H 2006 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Newport, Rhode Island, May 1−4, 2006 AIAA 2006-1965

    [33]

    Mosahebi A, Nadarajah S K 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4−7, 2010 AIAA 2010-1267

    [34]

    Yao W, Jaiman R K 2016 J. Fluids Struct. 65 313Google Scholar

    [35]

    Yao W, Marques S 2015 AIAA J. 53 2040Google Scholar

    [36]

    张炜, 席光 2009 西安交通大学学报 43 114Google Scholar

    Zhang W, Xi G 2009 Journal of Xi'an Jiaotong University 43 114Google Scholar

    [37]

    Jameson A 1991 10th Computational Fluid Dynamics Conference Honolulu, HI, June 24−26, 1991 AlAA 1991-1596

    [38]

    Landon R H 1982 NACA 0012 Oscillatory and Transient Pitching Tech. Rep. AGARD-R-702

    [39]

    Batina J T 1990 AIAA J. 28 1381Google Scholar

    [40]

    Henderson R D 1995 Phys. Fluids 7 2102Google Scholar

    [41]

    Wieselsberger C 1922 Physik. Z. 22 321

    [42]

    Roshko A 1954 On the Development of Turbulent Wakes From Vortex Streets (California Institute of Technology, NACA) Tech. Rep. 1191

    [43]

    Williamson C H K 1988 Phys. Fluids 31 2742Google Scholar

    [44]

    Williamson C H K 1998 J. Fluids Struct. 12 1073Google Scholar

    [45]

    张宝林 2005 最优化理论与算法 (北京: 清华大学出版社)

    Zhang B L 2005 Theory and Algorithms of Optimization (Beijing: Tsinghua University Press) (in Chinese)

    [46]

    Sohankar A, Davidson L, Norberg C 1995 Twelfth Australaian Fluid Mechanics Conference Sydney, Australia, December, 199 p517

  • 图 1  NACA0012翼型计算网格

    Figure 1.  Mesh for the NACA0012 airfoil.

    图 2  NACA0012翼型的(a)升力系数和(b)俯仰力矩系数迟滞曲线

    Figure 2.  (a) Lift and (b) pitching moment coefficients dynamic dependence of NACA0012 airfoil.

    图 3  NACA0012翼型俯仰振荡过程中的瞬时压力系数分布 (a) 攻角减小过程中α = –2.41°; (b) 攻角增大过程中α = –2.00°

    Figure 3.  Instantaneous pressure coefficient distribution compared to experimental data of NACA0012 airfoil: (a) α = –2.41° for decreasing angle; (b) α = –2.00° for increasing angle.

    图 4  HBM取不同谐波数时俯仰力矩系数收敛曲线 (a) NH = 1; (b) NH = 3

    Figure 4.  Pitching moment coefficient convergence history for the HBM with respect to the number of harmonics: (a) NH = 1; (b) NH = 3.

    图 5  CPU时间加速比随谐波数的变化

    Figure 5.  CPU time speedup of the HBM with respect to the TDM.

    图 6  二维圆柱计算网格

    Figure 6.  Computational grid for cylinder in cross flow.

    图 7  升、阻力系数收敛曲线

    Figure 7.  Time history of lift coefficient CL and drag CD.

    图 8  不同谐波数下的周期T收敛曲线

    Figure 8.  Convergence from initial guess to exact time period with varying number of harmonics.

    图 9  升力系数收敛曲线(NH = 3)

    Figure 9.  Time history of lift coefficient CL with NH = 3.

    图 10  升力系数随时间的变化

    Figure 10.  Variation of CL over one period.

    图 11  阻力系数随时间的变化

    Figure 11.  Variation of CD over one period.

    图 12  Re = 180, NH = 3条件下不同时刻的流线图 (a) t = T/3; (b) t = 2T/3; (c) t = T

    Figure 12.  Streamlines at various time instances over one period (Re = 180, NH = 3): (a) t = T/3; (b) t = 2T/3; (c) t = T.

    图 13  熵等值线图(CL最小时刻) (a) TDM计算结果; (b) HBM计算结果(NH = 3)

    Figure 13.  Comparison of instantaneous entropy contours: (a) TDM results; (b) HBM results (NH = 3).

    图 14  Strouhal数随Re的变化

    Figure 14.  Strouhal number as a function of Reynolds number.

    图 15  平均阻力系数随Re的变化

    Figure 15.  Mean coefficient of drag versus Reynolds number.

    图 16  不同步长λ下的周期T收敛曲线

    Figure 16.  Time period convergence computed with three different step sizes λ.

    图 17  不同步长T0下计算的周期T收敛曲线

    Figure 17.  Time period convergence with various starting guesses T0.

    图 18  T = 11.43 时重建的升力系数曲线

    Figure 18.  Variation of CL over one period with converged time period T = 11.43.

    图 19  HBM计算的St与TDM计算结果的对比

    Figure 19.  Comparison of the HBM St data results with TDM results.

    图 20  不同雷诺下的加速比

    Figure 20.  CPU time speedup of various Reynolds number.

    图 21  升力系数和t = T时刻的残差收敛曲线(Re = 180, T = 4, NH = 3) (a)升力系数; (b)残差

    Figure 21.  Time history of lift coefficient CL at various time instances over one period and residual at t = T (Re = 180, T = 4, NH = 3): (a) Lift coefficient; (b) residual.

    图 22  不同迭代步重建的升力系数随时间的变化(Re = 180, T = 4, NH = 3) (a)整体; (b)局部

    Figure 22.  Variation of CL over one period at different iterations: (a) Overall; (b) local.

    图 23  T = 5.389时各个时刻升力系数收敛曲线(NH = 3)

    Figure 23.  Time history of lift coefficient CL at various time instances over one period with T = 5.389 (NH = 3).

    图 24  相位差随周期T的变化(Re = 180, NH = 3)

    Figure 24.  Change in phase of unsteady lift versus time period for Re = 180 (NH = 3).

    图 25  残差随周期T的变化(Re = 180, NH = 3)

    Figure 25.  HBM solution residual versus time period for Re = 180 (NH = 3).

    图 26  采用牛顿法和SDM计算的周期T收敛曲线对比图 (a)初始T0 = 4; (b)初始T0 = 5.41

    Figure 26.  Convergence of shedding time period computed by Newton method and SDM: (a) T0 = 4; (b) T0 = 5.41.

    图 27  采用FR法计算的周期T收敛曲线(a)及其与SDM计算结果的比较(b)

    Figure 27.  Convergence of shedding time period computed by FR conjugate gradient method (a) and compared with the SDM results (b).

    图 28  采用三种不同优化方法计算得到的周期T收敛曲线图

    Figure 28.  Convergence of shedding time period computed by three different methods of optimization.

    图 29  二维方柱绕流计算网格

    Figure 29.  Computational grid for rectangular in cross flow.

    图 30  升力系数随时间的变化

    Figure 30.  Comparison of lift coefficients of HBM and TDM at Re = 100.

    图 31  熵等值线图(CL最小时刻) (a) TDM计算结果; (b) HBM计算结果(NH = 3)

    Figure 31.  Comparison of the instantaneous entropy contours: (a) TDM results; (b) HBM results (NH = 3).

    表 1  NACA0012翼型俯仰振荡AGARD CT5算例计算条件

    Table 1.  Computational conditions of the AGARD CT5 test case for the NACA0012 airfoil.

    ParameterValue
    Ma0.755
    α00.016°
    αm2.51°
    k0.1628
    DownLoad: CSV

    表 2  时域计算结果与实验结果对比

    Table 2.  Time-averaged coefficient and Strouhal number compared with experiment data.

    Experiment CD0 St
    Henderson[40] 1.336
    Wieselsberge[41] 1.3
    Roshko[42] 0.185
    Williamson[43] 0.1919
    Present 1.3457 0.185
    DownLoad: CSV

    表 3  不同谐波数下的计算结果

    Table 3.  Strouhal number and time-averaged coefficient computed by different number of harmonics.

    NHStCD0
    10.17451.2817
    20.1881.3440
    30.18561.3479
    40.18571.3506
    TDM0.1851.3457
    Roshko[42]0.185
    DownLoad: CSV

    表 4  时域计算结果

    Table 4.  Time-averaged coefficient and Strouhal number computed by time-domain solver using different physical time steps.

    tStCd, avg
    0.10.1341.443
    0.010.14151.487
    Sohankar[46]0.1421.466
    DownLoad: CSV

    表 5  Re = 100时不同谐波数下的计算结果对比

    Table 5.  Convergency of frequency and time-averaged coefficient with speedup estimates.

    NHStCd, avgSpeedup
    20.14191.484623.27
    30.14141.486317.88
    40.14141.48651.944
    TDM0.14151.4871
    DownLoad: CSV
    Baidu
  • [1]

    McMullen M, Jameson A, Alonso J 2006 AIAA J. 44 1428Google Scholar

    [2]

    Mosahebi A, Nadarajah S 2013 Comput. Fluids 75 140Google Scholar

    [3]

    Hall K C, Grawley E F 1989 AIAA J. 27 777Google Scholar

    [4]

    Zhang Z, Yang S, Chen P C 2012 J. Aircraft 49 922Google Scholar

    [5]

    Ning W, He L 1998 J. Turbomach. 120 508Google Scholar

    [6]

    Hall K C, Thomas J P, Clark W S 2002 AIAA J. 40 879Google Scholar

    [7]

    Ekici K, Hall K C 2007 AIAA J. 45 1047Google Scholar

    [8]

    McMullen M, Jameson A, Alonso J 2001 39th Aerospace Sciences Meeting and Exhibit Reno, NV, January 8−11, 2001 AIAA 2001-0152

    [9]

    Gopinath A, Jameson A 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10−13, 2005 AIAA 2005-1220

    [10]

    Rubino A, Pini M, Colonna P, Albring T, Nimmagadda S, Economon T, Alonso J 2018 J. Comput. Phys. 372 220Google Scholar

    [11]

    Lindblad D, Montero Villar G, Andersson N, Capitao Patrao A, Courty-Audren S K, Napias G 2018 AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 8−12, 2018 AIAA 2018-1004

    [12]

    Reddy T S R, Bakhle M 2009 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Denver, Colorado, August 2−5, 2009 AIAA 2009-5420

    [13]

    Cvijetic G, Jasak H 2018 AIAA Aerospace Sciences Meeting Kissimmee, Florida, January 8−12, 2018 AIAA 2018-0833

    [14]

    Hall K C, Thomas J P, Ekici K, Voytovych D M 2003 33rd AIAA Fluid Dynamics Conference and Exhibit Orlando, Florida, June 23−26, 2003 AIAA 2003-3998

    [15]

    Hall K C, Ekici K, Thomas J P, Dowell E H 2013 Int. J. Comput. Fluid Dyn. 27 54

    [16]

    Lindblad D, Andersson N 2017 55th AIAA Aerospace Sciences Meeting Grapevine, Texas, January 9−13, 2017 AIAA 2017-1171

    [17]

    杜鹏程, 宁方飞 2017 航空动力学报 32 528

    Du P C, Ning F F 2017 Journal of Aerospace Power 32 528

    [18]

    Thomas J P, Custer C H, Dowell E H, Hall K C, Corre C 2013 AIAA J. 51 1374Google Scholar

    [19]

    Thomas J P, Custer C H, Dowell E H, Hall K C 19th AIAA Computational Fluid Dynamics San Antonio, Texas, June 22−25, 2009 AIAA 2009-4270

    [20]

    Guillaume D, Frédéric S, Guillaume P 2010 AIAA J. 48 788Google Scholar

    [21]

    Ekici K, Hall K C, Dowell E H 2008 J. Comput. Phys. 227 6206Google Scholar

    [22]

    Da Ronch A, Vallespin D, Ghoreyshi M, Badcock K J 2012 AIAA J. 50 470Google Scholar

    [23]

    Da Ronch A, McCracken A J, Badcock K J, Widhalm M, Campobasso M S 2013 J. Aircraft 50 694Google Scholar

    [24]

    Murman S M 2005 43rd AIAA Aerospace Sciences Meeting Reno, NV, January 10−13, 2005 AIAA 2005-0840

    [25]

    Hassan D, Sicot F 2011 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4−7, 2011 AIAA 2011-1242

    [26]

    陈琦, 陈坚强, 袁先旭, 谢昱飞 2014 力学学报 46 183Google Scholar

    Chen Q, Chen J Q, Yuan X X, Xie Y F 2014 Chinese Journal of Theoretical and Applied Mechanics 46 183Google Scholar

    [27]

    柴振霞, 刘伟, 刘绪, 杨小亮 2018 国防科技大学学报 40 30Google Scholar

    Chai Z X, Liu W, Liu X, Yang X L 2018 J. Nat. Univ. Defense Technol. 40 30Google Scholar

    [28]

    Clark E B, Ekici K, Beran P S 2014 44th AIAA Fluid Dynamics Conference Atlanta, GA, June 16−20, 2014 AIAA 2014-3323

    [29]

    Cvijetic G, Jasak H, Vukcevic V 2016 54th AIAA Aerospace Sciences Meetin San Diego, California, USA, January 4−8, 2016 AIAA 2006-0070

    [30]

    McMullen M, Jameson A, Alonso J J 2002 40th AIAA Aerospace Sciences Meeting & Exhibit Reno, NV, January 14−17, 2002 AIAA 2002-0120

    [31]

    Gopinath A K, Jameson A 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 9−12, 2006 AIAA 2006-449

    [32]

    Spiker M A, Thomas J P, Hall K C, Kielb R E, Dowell E H 2006 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference Newport, Rhode Island, May 1−4, 2006 AIAA 2006-1965

    [33]

    Mosahebi A, Nadarajah S K 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4−7, 2010 AIAA 2010-1267

    [34]

    Yao W, Jaiman R K 2016 J. Fluids Struct. 65 313Google Scholar

    [35]

    Yao W, Marques S 2015 AIAA J. 53 2040Google Scholar

    [36]

    张炜, 席光 2009 西安交通大学学报 43 114Google Scholar

    Zhang W, Xi G 2009 Journal of Xi'an Jiaotong University 43 114Google Scholar

    [37]

    Jameson A 1991 10th Computational Fluid Dynamics Conference Honolulu, HI, June 24−26, 1991 AlAA 1991-1596

    [38]

    Landon R H 1982 NACA 0012 Oscillatory and Transient Pitching Tech. Rep. AGARD-R-702

    [39]

    Batina J T 1990 AIAA J. 28 1381Google Scholar

    [40]

    Henderson R D 1995 Phys. Fluids 7 2102Google Scholar

    [41]

    Wieselsberger C 1922 Physik. Z. 22 321

    [42]

    Roshko A 1954 On the Development of Turbulent Wakes From Vortex Streets (California Institute of Technology, NACA) Tech. Rep. 1191

    [43]

    Williamson C H K 1988 Phys. Fluids 31 2742Google Scholar

    [44]

    Williamson C H K 1998 J. Fluids Struct. 12 1073Google Scholar

    [45]

    张宝林 2005 最优化理论与算法 (北京: 清华大学出版社)

    Zhang B L 2005 Theory and Algorithms of Optimization (Beijing: Tsinghua University Press) (in Chinese)

    [46]

    Sohankar A, Davidson L, Norberg C 1995 Twelfth Australaian Fluid Mechanics Conference Sydney, Australia, December, 199 p517

  • [1] Liu Bo, Xing Pu, Ding Song, Xie Ming-Jun, Feng Lin, Shi Xiao-Tian. A new preconditioning algorithm for computable compressible flow. Acta Physica Sinica, 2022, 71(12): 124701. doi: 10.7498/aps.71.20220102
    [2] Niu Yue, Bao Wei-Min, Li Xiao-Ping, Liu Yan-Ming, Liu Dong-Lin. Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [3] Yan Chen-Shuai, Xu Jin-Liang. Numerical analysis on flow and heat transfer of supercritical CO2 in horizontal tube. Acta Physica Sinica, 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [4] Yu Ming-Hao. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma. Acta Physica Sinica, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [5] Wei Wei, Zhang Li-Yuan, Gu Zhao-Lin. Particle charging mechanism and numerical methodology for industrial applications. Acta Physica Sinica, 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [6] Ma Li-Qiang, Su Tie-Xiong, Liu Han-Tao, Meng-Qing. Numerical simulation on oscillation of micro-drops by means of smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [7] Zhou Hong-Qiang, Yu Ming, Sun Hai-Quan, Dong He-Fei, Zhang Feng-Guo. A continuum constitutive model and computational method of explosive detonation. Acta Physica Sinica, 2014, 63(22): 224702. doi: 10.7498/aps.63.224702
    [8] Liu Qiu-Zu, Kou Zi-Ming, Jia Yue-Mei, Wu Juan, Han Zhen-Nan, Zhang Qian-Qian. Wettability alteration simulation of modified hydrophobic solid surface by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [9] Liu Qiu-Zu, Kou Zi-Ming, Han Zhen-Nan, Gao Gui-Jun. Dynamic process simulation of droplet spreading on solid surface by lattic Boltzmann method. Acta Physica Sinica, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [10] Yang Jian-Hua, Zhu Hua. The response property of one kind of factional-order linear system excited by different periodical signals. Acta Physica Sinica, 2013, 62(2): 024501. doi: 10.7498/aps.62.024501
    [11] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Xu Zhi-Peng. Numerical simulation on segregation process of particles using 3D discrete element method. Acta Physica Sinica, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [12] Zhu Chang-Sheng, Wang Jun-Wei, Wang Zhi-Ping, Feng Li. Denedritic growth in forced flow using the phase-field simulation. Acta Physica Sinica, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [13] Zhang Yuan, Zhang Hao, Ma Xi-Kui. Intermediate-scale instability in one-cycle controlled Cuk power factor correction converter. Acta Physica Sinica, 2010, 59(12): 8432-8443. doi: 10.7498/aps.59.8432
    [14] Geng Shao-Fei, Tang De-Li, Zhao Jie, Qiu Xiao-Ming. Particle-in-cell simulation of a cylindrical Hall anode layer plasma accelerator. Acta Physica Sinica, 2009, 58(8): 5520-5525. doi: 10.7498/aps.58.5520
    [15] Wang Yu-Hong, Wang Jiang-An, Ren Xi-Chuang. Laser induced bubble characteristics with experimental and numerical methods. Acta Physica Sinica, 2009, 58(12): 8372-8378. doi: 10.7498/aps.58.8372
    [16] Wang Xiao-Nan, Di Hong-Shuang, Liang Bing-Jie, Xia Xiao-Ming. Three-dimensional numerical simulation of the edger and corner metal’s flow on edging rolling on roughing of hot continuous rolling process. Acta Physica Sinica, 2009, 58(13): 84-S88. doi: 10.7498/aps.58.84
    [17] Qian Xian-Mei, Zhu Wen-Yue, Rao Rui-Zhong. Phase screen distribution for simulating laser propagation along an inhomogeneous atmospheric path. Acta Physica Sinica, 2009, 58(9): 6633-6639. doi: 10.7498/aps.58.6633
    [18] Wang Kuang-Fei, Guo Jing-Jie, Mi Guo-Fa, Li Bang-Sheng, Fu Heng-Zhi. Numerical simulation of microstructure evolution during directional solidification of Ti-45at.%Al alloy. Acta Physica Sinica, 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [19] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] ZHOU YU-GANG, SHEN BO, LIU JIE, ZHOU HUI-MEI, YU HUI-QIANG, ZHANG RONG, SHI YI, ZHENG YOU-DOU. EXTRACTION OF POLARIZATION-INDUCED CHARGE DENSITY INMODULATION-DOPED AlxGa1-xN/GaN HETEROSTRUCTURETHROUGH THE SIMULATION OF THE SCHOTTKY CAPACITANCE-VOLTAGE CHARACTERISTICS. Acta Physica Sinica, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
Metrics
  • Abstract views:  10018
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2019
  • Accepted Date:  28 March 2019
  • Available Online:  01 June 2019
  • Published Online:  20 June 2019

/

返回文章
返回
Baidu
map