Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sol-gel indium-zinc-tin-oxide thin film transistor pixel array with superior stabilityunder negative bias illumination stress

Jing Bin Xu Meng Peng Cong Chen Long-Long Zhang Jian-Hua Li Xi-Feng

Citation:

Sol-gel indium-zinc-tin-oxide thin film transistor pixel array with superior stabilityunder negative bias illumination stress

Jing Bin, Xu Meng, Peng Cong, Chen Long-Long, Zhang Jian-Hua, Li Xi-Feng
PDF
HTML
Get Citation
  • In this paper, we fabricate a back channel etched structure thin film transistor (TFT) pixel array with hafnium-aluminum oxide dielectric and indium-zinc-tin-oxide (IZTO) semiconductor using a solution process. The electrical characteristics of IZTO TFT are modified by N2O plasma treatment. In comparison with the subthreshold swing and saturation mobility of the device untreated by plasma , the subthreshold swing decreases from 204 to 137 mV·dec–1, and the saturation mobility increases from 29.12 to 51.52 cm2·V–1·s–1. Improvement in the mobility and the subthreshold swing (SS) demonstrate that interface states may be passivated by reactive O radicals that are generated by N2O plasma, which is confirmed by the result of X-ray photoelectron spectrum analysis. In addition, the stability of negative bias illumination stress (NBIS) shift is only 0.1V for 3600 s with an illumination intensity of 10000 lux. This result indicates that its superior stability meets the requirements for the display driver. Therefore, N2O plasma treatment is verified to be an effective method to improve device performance and light stability for IZTO TFT pixel array.
      Corresponding author: Li Xi-Feng, lixifeng@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62174105, 61674101), the Program of Academic/Technology Research Leader of Shanghai, China (Grant No. 18XD1424400), the Shanghai Education Development Foundation and Shanghai Municipal Education Commission, CHina (Grant No. 18SG38).
    [1]

    Saito N, Ueda T, Tezuka T, Ikeda K 2018 IEEE J. Electron Devices Soc. 6 1253Google Scholar

    [2]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar

    [3]

    Kim J, Park J, Yoon G, Khushabu A, Kim J S, Pae S, Cho E C, Yi J 2020 Mater. Sci. Semicond. Process. 120 105264Google Scholar

    [4]

    Karteri İ, Karataş Ş, Al-Ghamdi A A, Yakuphanoğlu F 2015 Synth. Met. 199 241Google Scholar

    [5]

    Liu X Q, Wang J L, Liao C N, Xiao X H, Guo S S, Jiang C Z, Fan Z Y, Wang T, Chen X S, Lu W, Hu W D, Liao L 2014 Adv. Mater. 26 7399Google Scholar

    [6]

    Liu L C, Chen J S, Jeng J S 2014 Appl. Phys. Lett. 105 023509Google Scholar

    [7]

    Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J S, Jeong J K, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 90 212114Google Scholar

    [8]

    Xu H, Lan L, Xu M, Zou J, Wang L, Wang D, Peng J 2011 Appl. Phys. Lett. 99 253501Google Scholar

    [9]

    Xu Y L, Li X F, Zhu L Y, Zhang J H 2016 Mater. Sci. Semicond. Process. 46 23Google Scholar

    [10]

    Cho S H, Ko J B, Ryu M K, Yang J H, Yeom H I, Lim S K, Hwang C S, Park S H K 2015 IEEE Trans. Electron Devices 62 3653Google Scholar

    [11]

    Yang J H, Choi J H, Cho S H, Pi J E, Kim H O, Hwang C S, Park K, Yoo S 2018 IEEE Electron Device Lett. 39 508Google Scholar

    [12]

    Zhao M J, Zhang Z W, Xu Y C, Xu D S, Zhang J Y, Huang Z C 2020 Phys. Status Solidi A 217 1900773Google Scholar

    [13]

    Li Z Y, Yang H Z, Chen S C, Lu Y B, Xin Y Q, Yang T L, Sun H 2018 J. Phys. D:Appl. Phys. 51 175101Google Scholar

    [14]

    Cathleen A H, Gaillard J F, Kenneth R P 2010 J. Solid State Chem. 183 761Google Scholar

    [15]

    Jeong J K, Jeong J H, Yang H W, Park J S, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 91 113505Google Scholar

    [16]

    Chong E, Jo K C, Lee S Y 2010 Appl. Phys. Lett. 96 152102Google Scholar

    [17]

    Ye Z Z, Yue S L, Zhang J, Li X F, Chen L X, Lu J G 2016 IEEE Trans. Electron Devices 63 3547Google Scholar

    [18]

    Jhu J C, Chang T C, Chang G W, Tai Y H, Tsai W W, Chiang W J, Yan J Y 2013 J. Appl. Phys. 114 204501Google Scholar

    [19]

    Lu R K, Lu J G, Wei X S, Yue S L, Li S Q, Lu B J, Zhao Y, Zhu L P, Chen L X, Ye Z Z 2020 Adv. Electron. Mater. 6 2000233Google Scholar

    [20]

    Umeda K, Miyasako T, Sugiyama A, Tanaka A, Suzuki M, Tokumitsu E, Shimoda T 2013 J. Appl. Phys. 113 184509Google Scholar

    [21]

    Hsieh T Y, Chang T C, Chen T C, Tsai M Y, Lu W H, Chen S C, Jian F Y, Lin C S 2011 Thin Solid Films 520 1427Google Scholar

    [22]

    Pan C C, Yang S B, Chen L L, Shi J F, Sun X, Li X F, Zhang J H 2020 IEEE J. Electron Devices Soc. 8 524Google Scholar

    [23]

    Xu W X, Hu L Y, Zhao C, Zhang L J, Zhu D L, Cao P J, Liu W J, Han S, Liu X K, Jia F, Zeng Y X, Lu Y M 2018 Appl. Surf. Sci. 455 554Google Scholar

    [24]

    Mude N N, Bukke R N, Saha J K, Avis C, Jang J 2019 Adv. Electron. Mater. 5 1900768Google Scholar

    [25]

    Zhang Q, Xia G D, Li L B, Xia W W, Gong H Y, Wang S M 2019 Curr. Appl. Phys. 19 174Google Scholar

    [26]

    Hsu C C, Chou C H, Chen Y T, Jhang W C 2019 IEEE Trans. Electron Devices 66 2631Google Scholar

    [27]

    Lee C G, Dodabalapur A 2012 J. Electron. Mater. 41 895Google Scholar

    [28]

    Ohara H, Sasaki T, Noda K, Ito S, Sasaki M, Endo Y, Yoshitomi S, Sakata J, Serikawa T, Yamazaki S 2010 Jpn. J. Appl. Phys. 49 03cd02Google Scholar

    [29]

    Park J, Kim S, Kim C, Kim S, Song I, Yin H, Kim K K, Lee S, Hong K, Lee J, Jung J, Lee E, Kwon K W, Park Y 2008 Appl. Phys. Lett. 93 053505Google Scholar

    [30]

    Bukke R N, Avis C, Jang J 2016 IEEE Electron Device Lett. 37 433Google Scholar

    [31]

    Biswas P K, De A, Dua L K, Chkoda L 2006 Indian Acad. Sci. 29 323Google Scholar

    [32]

    Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Jian F Y, Tsai M Y 2011 Thin Solid Films 520 1422Google Scholar

    [33]

    Chowdhury H M D, Migliorato P, Jang J 2013 Appl. Phys. Lett. 102 143506Google Scholar

  • 图 1  IZTO TFT (a) 器件截面示意图; (b) 像素阵列10倍显微镜图像(插图为50倍)

    Figure 1.  (a) Schematic cross section of an IZTO TFT; (b) microscope images of the IZTO TFTs array with magnification 10 times (Inset shows 50 times).

    图 2  IZTO薄膜AFM图 (a) 无处理; (b) N2O等离子体处理

    Figure 2.  AFM images of the IZTO film: (a) without N2O plasma treatment ; (b) with N2O plasma treatment.

    图 3  (a) 有无N2O等离子体处理的IZTO TFT转移曲线; (b) 无处理的IZTO TFT输出曲线; (c) N2O等离子处理的IZTO TFT输出曲线

    Figure 3.  (a) Transfer characteristics of an IZTO TFT without and with N2O plasma treatment; output characteristics of an IZTO TFT (b) without and (c) with N2O plasma treatment.

    图 4  IZTO薄膜O 1s XPS图谱 (a) 无处理; (b) N2O等离子体处理

    Figure 4.  XPS of O 1s spectra on the surface of IZTO film (a) without and (b) with N2O plasma treatment.

    图 5  IZTO TFT的PBIS和NBIS稳定性 (a) 和(b) 为无处理, (c) 和(d) 为N2O等离子体处理; (e) 阈值电压随偏压时间的变化; (f) N2O等离子体处理后IZTO TFT的能带图示意图

    Figure 5.  Stability for IZTO TFT: Stability of (a) untreated and (c) treated PBIS; stability of (b) untreated and (d) treated NBIS; (e) plots of voltage shift versus time; (f) band diagram of IZTO TFT with N2O plasma treatment.

    图 6  IZTO薄膜的原子模型 (a) 无处理; (b) N2O等离子处理

    Figure 6.  Atomic model of the IZTO film (a) without and (b) with N2O plasma treatment.

    图 7  阵列中各个位置器件负偏压光照稳定性分布 (a) 左上; (b)右上; (c) 中间; (d)左下; (e) 右下; (f) 阵列整体负偏压光照稳定性

    Figure 7.  Illumination stability distribution of devices under negative bias in the array: (a) Top-left; (b) top-right; (c) middle; (d) bottom-left; (e) bottom-right; (f) the negative bias illumination stress stability of the array.

    图 8  20个器件迁移率和亚阈值摆幅分布 (a), (b) N2O等离子体处理; (c), (d) 无处理

    Figure 8.  Histogram of threshold voltage and mobility for the IZTO TFTs: (a) , (b) With N2O plasma treatment; (c), (d) without N2O plasma treatment. The data are collected from 20 TFTs.

    表 1  有无N2O等离子体处理的IZTO TFT性能对比

    Table 1.  Device performance comparison of IZTO TFT without and with N2O plasma treatment.

    阈值
    电压/
    V
    迁移率/

    (cm2·V–1·s–1)
    亚阈值摆幅/

    (mV·dec–1)
    开关比
    Untreated–0.529.122041.1×107
    Treated0.151.521372.3×107
    DownLoad: CSV
    Baidu
  • [1]

    Saito N, Ueda T, Tezuka T, Ikeda K 2018 IEEE J. Electron Devices Soc. 6 1253Google Scholar

    [2]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar

    [3]

    Kim J, Park J, Yoon G, Khushabu A, Kim J S, Pae S, Cho E C, Yi J 2020 Mater. Sci. Semicond. Process. 120 105264Google Scholar

    [4]

    Karteri İ, Karataş Ş, Al-Ghamdi A A, Yakuphanoğlu F 2015 Synth. Met. 199 241Google Scholar

    [5]

    Liu X Q, Wang J L, Liao C N, Xiao X H, Guo S S, Jiang C Z, Fan Z Y, Wang T, Chen X S, Lu W, Hu W D, Liao L 2014 Adv. Mater. 26 7399Google Scholar

    [6]

    Liu L C, Chen J S, Jeng J S 2014 Appl. Phys. Lett. 105 023509Google Scholar

    [7]

    Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J S, Jeong J K, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 90 212114Google Scholar

    [8]

    Xu H, Lan L, Xu M, Zou J, Wang L, Wang D, Peng J 2011 Appl. Phys. Lett. 99 253501Google Scholar

    [9]

    Xu Y L, Li X F, Zhu L Y, Zhang J H 2016 Mater. Sci. Semicond. Process. 46 23Google Scholar

    [10]

    Cho S H, Ko J B, Ryu M K, Yang J H, Yeom H I, Lim S K, Hwang C S, Park S H K 2015 IEEE Trans. Electron Devices 62 3653Google Scholar

    [11]

    Yang J H, Choi J H, Cho S H, Pi J E, Kim H O, Hwang C S, Park K, Yoo S 2018 IEEE Electron Device Lett. 39 508Google Scholar

    [12]

    Zhao M J, Zhang Z W, Xu Y C, Xu D S, Zhang J Y, Huang Z C 2020 Phys. Status Solidi A 217 1900773Google Scholar

    [13]

    Li Z Y, Yang H Z, Chen S C, Lu Y B, Xin Y Q, Yang T L, Sun H 2018 J. Phys. D:Appl. Phys. 51 175101Google Scholar

    [14]

    Cathleen A H, Gaillard J F, Kenneth R P 2010 J. Solid State Chem. 183 761Google Scholar

    [15]

    Jeong J K, Jeong J H, Yang H W, Park J S, Mo Y G, Kim H D 2007 Appl. Phys. Lett. 91 113505Google Scholar

    [16]

    Chong E, Jo K C, Lee S Y 2010 Appl. Phys. Lett. 96 152102Google Scholar

    [17]

    Ye Z Z, Yue S L, Zhang J, Li X F, Chen L X, Lu J G 2016 IEEE Trans. Electron Devices 63 3547Google Scholar

    [18]

    Jhu J C, Chang T C, Chang G W, Tai Y H, Tsai W W, Chiang W J, Yan J Y 2013 J. Appl. Phys. 114 204501Google Scholar

    [19]

    Lu R K, Lu J G, Wei X S, Yue S L, Li S Q, Lu B J, Zhao Y, Zhu L P, Chen L X, Ye Z Z 2020 Adv. Electron. Mater. 6 2000233Google Scholar

    [20]

    Umeda K, Miyasako T, Sugiyama A, Tanaka A, Suzuki M, Tokumitsu E, Shimoda T 2013 J. Appl. Phys. 113 184509Google Scholar

    [21]

    Hsieh T Y, Chang T C, Chen T C, Tsai M Y, Lu W H, Chen S C, Jian F Y, Lin C S 2011 Thin Solid Films 520 1427Google Scholar

    [22]

    Pan C C, Yang S B, Chen L L, Shi J F, Sun X, Li X F, Zhang J H 2020 IEEE J. Electron Devices Soc. 8 524Google Scholar

    [23]

    Xu W X, Hu L Y, Zhao C, Zhang L J, Zhu D L, Cao P J, Liu W J, Han S, Liu X K, Jia F, Zeng Y X, Lu Y M 2018 Appl. Surf. Sci. 455 554Google Scholar

    [24]

    Mude N N, Bukke R N, Saha J K, Avis C, Jang J 2019 Adv. Electron. Mater. 5 1900768Google Scholar

    [25]

    Zhang Q, Xia G D, Li L B, Xia W W, Gong H Y, Wang S M 2019 Curr. Appl. Phys. 19 174Google Scholar

    [26]

    Hsu C C, Chou C H, Chen Y T, Jhang W C 2019 IEEE Trans. Electron Devices 66 2631Google Scholar

    [27]

    Lee C G, Dodabalapur A 2012 J. Electron. Mater. 41 895Google Scholar

    [28]

    Ohara H, Sasaki T, Noda K, Ito S, Sasaki M, Endo Y, Yoshitomi S, Sakata J, Serikawa T, Yamazaki S 2010 Jpn. J. Appl. Phys. 49 03cd02Google Scholar

    [29]

    Park J, Kim S, Kim C, Kim S, Song I, Yin H, Kim K K, Lee S, Hong K, Lee J, Jung J, Lee E, Kwon K W, Park Y 2008 Appl. Phys. Lett. 93 053505Google Scholar

    [30]

    Bukke R N, Avis C, Jang J 2016 IEEE Electron Device Lett. 37 433Google Scholar

    [31]

    Biswas P K, De A, Dua L K, Chkoda L 2006 Indian Acad. Sci. 29 323Google Scholar

    [32]

    Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Jian F Y, Tsai M Y 2011 Thin Solid Films 520 1422Google Scholar

    [33]

    Chowdhury H M D, Migliorato P, Jang J 2013 Appl. Phys. Lett. 102 143506Google Scholar

  • [1] Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Physica Sinica, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [2] Zhang Xue, Kim Bokyung, Lee Hyeonju, Park Jaehoon. Low-temperature rapid preparation of high-performance indium oxide thin films and transistors based on solution technology. Acta Physica Sinica, 2024, 73(9): 096802. doi: 10.7498/aps.73.20240082
    [3] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [4] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [5] Zhang Shi-Yu, Yu Zhi-Nong, Cheng Jin, Wu De-Long, Li Xu-Yang, Xue Wei. Effects of annealing temperature and Ga content on properties of solution-processed InGaZnO thin film. Acta Physica Sinica, 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [6] Jin Rong, Chen Xiao-Hong. Structures and stabilities of VOxH2O (x= 15) clusters. Acta Physica Sinica, 2012, 61(9): 093103. doi: 10.7498/aps.61.093103
    [7] Gao Tan-Hua, Wu Shun-Qing, Hu Chun-Hua, Zhu Zi-Zhong. The structural stability and electronic properties of monolayer BC2N. Acta Physica Sinica, 2011, 60(12): 127305. doi: 10.7498/aps.60.127305
    [8] Luo Chong, Meng Zhi-Guo, Wang Shuo, Xiong Shao-Zhen. Preparation of poly-slicon thin film by aluminum induced crystallization based on Al-salt solution. Acta Physica Sinica, 2009, 58(9): 6560-6565. doi: 10.7498/aps.58.6560
    [9] Guo Zi-Zheng, Xuan Zhi-Guo, Zhang Yuan-Sheng, An Cai-Hong. Research on the temperature stability of triangular ferromagnetic nanowire arrays using the damage spreading method. Acta Physica Sinica, 2008, 57(10): 6571-6576. doi: 10.7498/aps.57.6571
    [10] Li He, Li Xue-Dong, Li Juan, Wu Chun-Ya, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Li-Zhu. Investigation on the improvement of the stability and uniformity of solution-based metal-induced crystallization poly-Si using surface-embellishment. Acta Physica Sinica, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [11] Yang Jian-Song, Li Bao-Xing. Study of the stability of gallium-arsenic ion clusters. Acta Physica Sinica, 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
    [12] Sa Ning, Kang Jin-Feng, Yang Hong, Liu Xiao-Yan, Zhang Xing, Han Ru-Qi. Negative bias temperature instability of HfN/HfO2 gated p-MOSFETs. Acta Physica Sinica, 2006, 55(3): 1419-1423. doi: 10.7498/aps.55.1419
    [13] Zhu Zu-Song, Lin Xuan-Ying, Yu Yun-Peng, Lin Kui-Xun, Qiu Gui-Ming, Huang Rui, Yu Chu-Ying. The light-stability of polycrystalline silicon films deposited at low temperatures from SiCl4/H2 mixture. Acta Physica Sinica, 2005, 54(8): 3805-3809. doi: 10.7498/aps.54.3805
    [14] HUO CHONG-RU, ZHU ZHEN-HE, GE PEI-WEN, CHEN DONG. THE STABILITY OF THE CRYSTAL GROWTH FACE IN A MODEL FOR CRYSTAL GROWTH FROM SOLUTION UNDER MICROGRAVITY . Acta Physica Sinica, 2001, 50(3): 377-382. doi: 10.7498/aps.50.377
    [15] LI QUAN, LIU XIAO-YA, WANG HONG-YAN, ZHU ZHENG HE, FU YI-BEI, WANG XIAO-LIN, SUN YING. POTENTIONAL ENERGY FUNCTION AND STABILITY OF PuHn+ (n=1,2,3). Acta Physica Sinica, 2000, 49(12): 2347-2351. doi: 10.7498/aps.49.2347
    [16] WANG HE-YING, JIANG EN-YONG, ME ZHEN-WEI, HE YUAN-JIN. EFFECTS OF Ti DOPING ON THE PHASE STABILITY OF α″-Fe16N2. Acta Physica Sinica, 1998, 47(11): 1912-1916. doi: 10.7498/aps.47.1912
    [17] ZHOU YU-MEI, C. S. WU. ION-ION STREAMING INSTABILITY IN A HIGH BETA PLASMA. Acta Physica Sinica, 1983, 32(10): 1319-1322. doi: 10.7498/aps.32.1319
    [18] HUO YU-PING. THE STATIC STABILITY OF PLASMA. Acta Physica Sinica, 1977, 26(2): 149-154. doi: 10.7498/aps.26.149
    [19] . Acta Physica Sinica, 1975, 24(2): 91-96. doi: 10.7498/aps.24.91
    [20] . Acta Physica Sinica, 1965, 21(9): 1700-1704. doi: 10.7498/aps.21.1700
Metrics
  • Abstract views:  4591
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2022
  • Accepted Date:  23 March 2022
  • Available Online:  24 June 2022
  • Published Online:  05 July 2022

/

返回文章
返回
Baidu
map