-
交流旋转滑动弧放电能够在大气压下产生大面积、高活性的非平衡等离子体. 为了研究交流旋转滑动弧的滑动放电模式、放电特性及光谱特性, 本文采用高速相机与示波器同步采集旋转滑动弧的放电图像和电信号, 采用光谱仪采集光谱信号, 分析旋转滑动弧运动过程中电弧的动态行为、电信号及光谱信号特征. 实验结果表明, 旋转滑动弧放电过程中存在两种不同的滑动放电模式, 即伴随击穿滑动放电模式(B-G模式)与稳定滑动放电模式(A-G模式). 其中B-G模式以电弧旋转滑动过程中伴随击穿-熄灭-击穿的高频击穿现象为主要特征, 而A-G模式以持续稳定的连续电弧滑动为主要特征. 本文讨论了工作参数影响滑动弧放电模式、放电特性及光谱特性的工作机制. 研究发现, 电弧的放电模式和放电特性是激励电压与气体流量共同作用的结果. 当气体流量较大、激励电压较小时, 滑动弧为B-G模式主导的高频击穿不稳定放电; 而当激励电压较大、气体流量较小时, 滑动弧则为A-G模式为主导的稳定滑动放电.Alternating current rotating gliding arc discharge can produce large-scale, wide-range non-equilibrium plasma at atmospheric pressure. In order to investigate the gliding discharge mode, discharge characteristics and Spectral characteristics of AC rotating gliding arc discharge plasma, high speed camera, oscilloscope and spectrometer are used to collect discharge images and electrical signals of rotating gliding arc synchronously. Thus the dynamic behavior of arc and the characteristics of electric signal in the process of rotating gliding arc can be analyzed. The experimental results show that there are two different discharge modes in the rotating gliding arc discharge process, namely the breakdown gliding discharge mode (B-G mode) and the stable gliding discharge mode (A-G mode). The B-G mode is mainly characterized by high-frequency breakdown phenomenon (breakdown-extinguish-breakdown) during the arc gliding process, while the A-G mode is mainly characterized by stable continuous arc sliding. The paper also discusses the working mechanism in which the working parameters influence the gliding arc discharge characteristics. It is shown that the discharge mode and discharge characteristics of arc are the result of the combined action of excitation voltage and gas flow. When the gas flow is large and the excitation voltage is small, the gliding arc is an unstable discharge dominated by the B-G mode. Conversely, when the excitation voltage is large and the gas flow is small, the gliding arc is a stable gliding discharge dominated by the A-G mode. In addition, in B-G mode, the energy consumption is mainly concentrated in the breakdown moment, and the energy release is mainly pulsed. However, when the gliding arc discharge is in A-G mode, the energy dissipation is mainly used to maintain the continuous existence of the arc without extinguishing, and the energy release is stable and continuous. Affected by the gas flow rate and excitation voltage, the breakdown frequency of the B-G mode is greater than that of the A-G mode. Higher repeat breakdown frequency can cause multiple ionization in the process of gliding arc discharge, which produces more active particles. The research conclusions in this paper provide theoretical support for regulating the operating characteristics of the gliding arc discharge. In engineering application, the discharge mode, breakdown frequency and breakdown current of the gliding arc can be adjusted by changing the working parameters to obtain plasma sources with different characteristics.
-
Keywords:
- rotating gliding arc /
- discharge mode /
- breakdown frequency /
- breakdown current
[1] Czernichowski A 1994 Pure Appl. Chem. 66 061301
[2] Czernichowski A, Czernichowski M 2005 17 th International Symposium On Plasma Chemistry Toronto, Canada, August 7–12, 2005 p001
[3] Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf Y O 1998 Prog. Energy Combust. 25 0211Google Scholar
[4] Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A 2020 Green Chem. 22 04
[5] Wu A J, Li X D, Yan J H, Zhu F S, Lu S Y 2016 Int. J. Hydrogen Energy 41 2222Google Scholar
[6] Xia Y, Lu N, Wang B, Li J, Shang K F, Jiang N, Wu Y 2017 Int. J. Hydrogen Energy 42 001Google Scholar
[7] Whitehead J C, Prantsidou M 2016 J. Phys. D: Appl. Phys. 49 154001Google Scholar
[8] 邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685
Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage Engineering 42 685
[9] Zhang H, Zhu F S, Li X D, Xu R Y, Li L, Yan J H 2019 J. Hazard. Mater. 369 244Google Scholar
[10] Xu R Y, Zhu F S, Zhang H, Ruya P M, Li L, Li X D 2020 Energy Fuels 34 2045Google Scholar
[11] 李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697
Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Engineering 42 3697
[12] Pawłat Joanna, Terebun P, Kwiatkowski M, Tarabová B, Kovaľová Z, Kučerová K, Machala Z, Janda M, Hensel K 2019 Plasma Chem. Plasma Process. 39 627Google Scholar
[13] Hameedl T A, Kadhem S J 2020 IOP Conf. Ser.: Mater. Sci. Eng. 757 012045Google Scholar
[14] Ju Y G, Sun W T 2015 Prog. Energy Combust. 48 21Google Scholar
[15] Feng R, Li J, Wu Y, Jia M, Jin D 2020 Aerosp. Sci. Technol. 99 105752Google Scholar
[16] Kong C D, Gao J L, Zhu J J, Andreas E, Marcus A, Li Z S 2018 IEEE Trans. Plasma Sci. 47 403
[17] Gray J A T, Lacoste D A 2019 Combust. Flame 199 258Google Scholar
[18] 牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛 2015 64 195204Google Scholar
Niu Z T, Zhang C, Ma Y F, Wang R X, Chen G Y, Yan P, Shao T 2015 Acta Physica Sinica 64 195204Google Scholar
[19] Kikuchi Y, Nakagawa T 2020 IEEE Trans. Plasma Sci. 99 001
[20] 何立明, 陈一, 刘兴建, 吴勇, 刘鹏飞, 张一汉 2016 高电压技术 42 1921
He L M, Chen Y, Liu X J, Wu Y, Liu P X, Zhang Y H 2016 High Voltage Engineering 42 1921
[21] Sun S R, Kolev S, Wang H X, Bogaerts A 2016 Plasma Sources Sci. Technol. 26 015003Google Scholar
[22] Kolev S, Bogaerts A 2018 Plasma Sources Sci. Technol. 27 125011Google Scholar
[23] Ananthanarasimhan J, Rao L, Shivapuji A, Dasappa S 2019 International Plasma Chemistry Society, Naples, Italy, June 9–14, ISPC-24
[24] Wu A J, Zhang H, Li X D, Lu S Y, Du C M, Yan J H 2015 IEEE Trans. Plasma Sci. 43 836Google Scholar
[25] Zhang H, Zhu F S, Tu X, Bo Z, Li X D 2016 Plasma Sci. Technol. 18 473Google Scholar
[26] 何立明, 雷健平, 陈一, 刘兴建, 陈高成, 曾昊 2017 高电压技术 43 3061
He L M, Lei J P, Chen Y, Liu X J, Chen G C, Zeng H 2017 High Voltage Engineering 43 3061
[27] 鲁娜, 孙丹凤, 王冰, 李杰, 吴彦 2018 高电压技术 44 1930
Lu N, Sun D F, Wang B, Li J, Wu Y 2018 High Voltage Engineering 44 1930
[28] Li L, Zhang H, Li X D, Kong X Z, Xu R Y, Tay K, Tu X 2019 J. CO2 Util. 29 296Google Scholar
[29] Li H P, Ostrikov K K, Sun W T 2018 Phys. Rep. 770 001
[30] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程 2018 67 075201Google Scholar
Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018 Acta Phys. Sin. 67 075201Google Scholar
[31] 李晓东, 张明, 朱凤森, 张浩, 薄拯 2015 高电压技术 41 2022
Li X D, Zhang M, Zhu F S, Zhang H, Bo Z 2015 High Voltage Engineering 41 2022
-
图 3 B-G模式下的滑动弧放电的电信号及电弧运动图像(U0 = 100 V, Q = 120 SLM) (a)一个完整滑动周期的电信号曲线; (b)滑动弧放电图像(左)及完整周期的滑动弧运动过程图像(右); (c)滑动弧运动图像和电信号同步特征
Fig. 3. Electric signal and arc image of rotating gliding arc discharge in B-G mode (U0 = 100 V, Q = 120 SLM): (a) The electrical signal curve of a gliding period; (b) gliding arc discharge image (left) and a cycle of gliding arc motion process image (right); (c) synchronization of gliding arc moving image and electric signal.
图 4 A-G模式下的滑动弧放电的电信号及电弧运动图像(U0 = 100 V, Q = 40 SLM) (a)完整滑动周期的电信号曲线; (b)滑动弧放电图像(左)及完整周期的滑动弧运动过程图像(右); (c)滑动弧运动图像和电信号同步特征
Fig. 4. Electric signal and arc image of rotating gliding arc discharge in A-G mode (U0 = 100 V, Q = 40 SLM): (a) The electrical signal curve of a gliding period; (b) gliding arc discharge image (left) and a cycle of gliding arc motion process image (right); (c) synchronization of gliding arc moving image and electric signal.
图 10 不同气体流量、激励电压下的OH和O的特征波长的光谱发射强度 (a) OH (309 nm)光谱发射强度; (b) O (777.4 nm)光谱发射强度; (c) O (822.2 nm)光谱发射强度
Fig. 10. Spectral emission intensity of OH and O characteristic wavelengths under different gas flow rates and excitation voltages: (a) OH (309 nm) spectral emission intensity; (b) O (777.4 nm) spectral emission intensity; (c) O (822.2 nm) Spectral emission intensity.
表 1 实验工况表
Table 1. Experimental conditions table.
工况 压力P/kPa 激励电压U0/V 气体流量Q/SLM 1 101 100 40 2 101 100 60 3 101 100 90 4 101 100 120 5 101 150 40 6 101 150 60 7 101 150 90 8 101 150 120 -
[1] Czernichowski A 1994 Pure Appl. Chem. 66 061301
[2] Czernichowski A, Czernichowski M 2005 17 th International Symposium On Plasma Chemistry Toronto, Canada, August 7–12, 2005 p001
[3] Fridman A, Nester S, Kennedy L A, Saveliev A, Mutaf Y O 1998 Prog. Energy Combust. 25 0211Google Scholar
[4] Slaets J, Aghaei M, Ceulemans S, Van Alphen S, Bogaerts A 2020 Green Chem. 22 04
[5] Wu A J, Li X D, Yan J H, Zhu F S, Lu S Y 2016 Int. J. Hydrogen Energy 41 2222Google Scholar
[6] Xia Y, Lu N, Wang B, Li J, Shang K F, Jiang N, Wu Y 2017 Int. J. Hydrogen Energy 42 001Google Scholar
[7] Whitehead J C, Prantsidou M 2016 J. Phys. D: Appl. Phys. 49 154001Google Scholar
[8] 邵涛, 章程, 王瑞雪, 严萍, 任成燕 2016 高电压技术 42 685
Shao T, Zhang C, Wang R X, Yan P, Ren C Y 2016 High Voltage Engineering 42 685
[9] Zhang H, Zhu F S, Li X D, Xu R Y, Li L, Yan J H 2019 J. Hazard. Mater. 369 244Google Scholar
[10] Xu R Y, Zhu F S, Zhang H, Ruya P M, Li L, Li X D 2020 Energy Fuels 34 2045Google Scholar
[11] 李和平, 于达仁, 孙文廷, 刘定新, 李杰, 韩先伟, 李增耀, 孙冰, 吴云 2016 高电压技术 42 3697
Li H P, Yu D R, Sun W T, Liu D X, Li J, Han X W, Li Z Y, Sun B, Wu Y 2016 High Voltage Engineering 42 3697
[12] Pawłat Joanna, Terebun P, Kwiatkowski M, Tarabová B, Kovaľová Z, Kučerová K, Machala Z, Janda M, Hensel K 2019 Plasma Chem. Plasma Process. 39 627Google Scholar
[13] Hameedl T A, Kadhem S J 2020 IOP Conf. Ser.: Mater. Sci. Eng. 757 012045Google Scholar
[14] Ju Y G, Sun W T 2015 Prog. Energy Combust. 48 21Google Scholar
[15] Feng R, Li J, Wu Y, Jia M, Jin D 2020 Aerosp. Sci. Technol. 99 105752Google Scholar
[16] Kong C D, Gao J L, Zhu J J, Andreas E, Marcus A, Li Z S 2018 IEEE Trans. Plasma Sci. 47 403
[17] Gray J A T, Lacoste D A 2019 Combust. Flame 199 258Google Scholar
[18] 牛宗涛, 章程, 马云飞, 王瑞雪, 陈根永, 严萍, 邵涛 2015 64 195204Google Scholar
Niu Z T, Zhang C, Ma Y F, Wang R X, Chen G Y, Yan P, Shao T 2015 Acta Physica Sinica 64 195204Google Scholar
[19] Kikuchi Y, Nakagawa T 2020 IEEE Trans. Plasma Sci. 99 001
[20] 何立明, 陈一, 刘兴建, 吴勇, 刘鹏飞, 张一汉 2016 高电压技术 42 1921
He L M, Chen Y, Liu X J, Wu Y, Liu P X, Zhang Y H 2016 High Voltage Engineering 42 1921
[21] Sun S R, Kolev S, Wang H X, Bogaerts A 2016 Plasma Sources Sci. Technol. 26 015003Google Scholar
[22] Kolev S, Bogaerts A 2018 Plasma Sources Sci. Technol. 27 125011Google Scholar
[23] Ananthanarasimhan J, Rao L, Shivapuji A, Dasappa S 2019 International Plasma Chemistry Society, Naples, Italy, June 9–14, ISPC-24
[24] Wu A J, Zhang H, Li X D, Lu S Y, Du C M, Yan J H 2015 IEEE Trans. Plasma Sci. 43 836Google Scholar
[25] Zhang H, Zhu F S, Tu X, Bo Z, Li X D 2016 Plasma Sci. Technol. 18 473Google Scholar
[26] 何立明, 雷健平, 陈一, 刘兴建, 陈高成, 曾昊 2017 高电压技术 43 3061
He L M, Lei J P, Chen Y, Liu X J, Chen G C, Zeng H 2017 High Voltage Engineering 43 3061
[27] 鲁娜, 孙丹凤, 王冰, 李杰, 吴彦 2018 高电压技术 44 1930
Lu N, Sun D F, Wang B, Li J, Wu Y 2018 High Voltage Engineering 44 1930
[28] Li L, Zhang H, Li X D, Kong X Z, Xu R Y, Tay K, Tu X 2019 J. CO2 Util. 29 296Google Scholar
[29] Li H P, Ostrikov K K, Sun W T 2018 Phys. Rep. 770 001
[30] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程 2018 67 075201Google Scholar
Li X C, Geng J L, Jia P Y, Wu K Y, Jia B Y, Kang P C 2018 Acta Phys. Sin. 67 075201Google Scholar
[31] 李晓东, 张明, 朱凤森, 张浩, 薄拯 2015 高电压技术 41 2022
Li X D, Zhang M, Zhu F S, Zhang H, Bo Z 2015 High Voltage Engineering 41 2022
计量
- 文章访问数: 10788
- PDF下载量: 287
- 被引次数: 0