搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z箍缩内爆产生的电磁脉冲辐射

但加坤 任晓东 黄显宾 张思群 周少彤 段书超 欧阳凯 蔡红春 卫兵 计策 何安 夏明鹤 丰树平 王勐 谢卫平

引用本文:
Citation:

Z箍缩内爆产生的电磁脉冲辐射

但加坤, 任晓东, 黄显宾, 张思群, 周少彤, 段书超, 欧阳凯, 蔡红春, 卫兵, 计策, 何安, 夏明鹤, 丰树平, 王勐, 谢卫平

Electromagnetic pulse emission produced by Z pinch implosions

Dan Jia-Kun, Ren Xiao-Dong, Huang Xian-Bin, Zhang Si-Qun, Zhou Shao-Tong, Duan Shu-Chao, Ouyang Kai, Cai Hong-Chun, Wei Bing, Ji Ce, He An, Xia Ming-He, Feng Shu-Ping, Wang Meng, Xie Wei-Ping
PDF
导出引用
  • 讨论了Z箍缩内爆产生的低频电磁脉冲的辐射特性. Z箍缩驱动金属丝阵或固体套筒高速内爆,部分磁能通过与负载的运动耦合而向外辐射. 理论结果表明,电磁脉冲辐射功率由电流和内爆轨迹共同决定. 在中国工程物理研究院流体物理研究所的初级实验平台上开展了负载电流为7 MA,10%–90%上升时间65 ns的丝阵Z箍缩实验,根据实验测得的电流和内爆轨迹得到了电磁脉冲的辐射功率和频谱. 电磁脉冲峰值功率约为1 GW,能量约为0.5 J,能量转换效率约为10-7;峰值频率位于20–70 MHz,具有较宽的辐射频谱. 电磁脉冲辐射参数远小于软X射线辐射参数(峰值功率为50 TW,能量为0.5 MJ). 在弱相对论条件下,电磁脉冲辐射功率近似地正比于电流的6次方,随电流急剧增大. 软X射线辐射是丝阵Z箍缩过程中的主要能量转换形式,本文的研究结论表明,在更高的驱动电流下,电磁脉冲辐射将提供另一种重要的能量转换途径,势必会对诊断设备造成严重影响;此外,这类强电磁脉冲在其他领域也具有潜在的应用价值.
    In this paper, we represent the radiation characteristics of electromagnetic pulse generated by Z pinch implosion. Magnetic energy which couples with motions of metallic wire arrays or solid liners driven by Z pinch can radiate away. Theoretical results indicate that the radiation power of electromagnetic pulse is determined by both load current and implosion trace. Experiments are carried on primary test stand facility at Institute of Fluid Physics where a current rising to 7 MA in (10%–90%) 65 ns is used to drive a wire array Z pinch. The measured load current and implosion trace show that the Z pinch can deliver about 1 GW, 10 ns full width, 20–70 MHz central frequency, broadband electromagnetic pulse with an energy conversion efficiency of 10-7. Parameters of electromagnetic pulse are much smaller than those of X-ray with a power of 50 TW and an energy of 0.5 MJ. In the approximation of weak relativistic case, the power of electromagnetic pulse which is proportional to sixth power of load current, dramatically increases with current increasing. Soft X-ray radiation is an important channel for dissipating a considerable fraction of energy provided by facility. The results presented here demonstrate that electromagnetic pulse emission in the case of higher load current can cause significant damage to diagnostic devices. Moreover, intense electromagnetic pulse produced by this method may have many potential applications.
    • 基金项目: 国家自然科学基金重点项目(批准号:11135007)、中国工程物理研究院科学技术发展基金(批准号:2013B0102003)和流体物理研究所发展基金(批准号:SFZ20110402)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11135007), the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2013B0102003), and the Development Foundation of Institute of Fluid Physics, China (Grant No. SFZ20110402).
    [1]

    Bailey J E, Chandler G A, Slutz S A, Golovkin I, Lake P W, MacFarlane J J, Mancini R C, Burris-Mog T J, Cooper G, Leeper R J, Mehlhorn T A, Moore T C, Nash T J, Nielsen D S, Ruiz C L, Schroen D G, Varnum W A 2004 Phys. Rev. Lett. 92 085002

    [2]

    Ruiz C L, Cooper G W, Slutz S A, Bailey J E, Chandler G A, Nash T J, Mehlhorn T A, Leeper R J, Fehl D, Nelson A J, Franklin J, Ziegler L 2004 Phys. Rev. Lett. 93 015001

    [3]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [4]

    Amplefor D J, Jennings C A, Hall G N, Lebedev S V, Bland S N, Bott S C, Suzuki-Vidal F, Palmer J B A, Chittenden J P, Cuneo M E, Frank A, Blackman E G, Ciardi A 2010 Phys. Plasmas 17 056315

    [5]

    Matzen M K 1997 Phys. Plasmas 5 1519

    [6]

    Bailey J E, Rochau G A, Mancini R C, Lglesias C A, MacFarlane J J, Golovkin I E, Blancard C, Cosse P, Faussurier G 2009 Phys. Plasmas 16 058101

    [7]

    Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seamen J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, McKenney J L, Mock R C, Vargas M, Wagoner T 1998 Phys. Plasmas 5 2105

    [8]

    Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, L’Eplattenier P, Chandler G A, Seamen J F, Struve K W 1998 Phys. Rev. Lett. 81 4883

    [9]

    Martin M R, Lemke R W, McBride R D, Davis J P, Dolan D H, Knudson M D, Cochrane K R, Sinars D B, Smith I C, Savage M, Stygar W A, Killebrew K, Flicker D G, Herrmann M C 2012 Phys. Plasmas 19 056310

    [10]

    Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Peterson K J, Vesey R A, Nakhleh C, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2010 Phys. Rev. Lett. 105 185001

    [11]

    Huang X B, Yang L B, Li J, Zhou S T, Ren X D, Zhang S Q, Dan J K, Cai H C, Duan S C, Chen G H, Zhang Z W, Ouyang K, Li J, Zhang Z H, Zhou R G, Wang G L 2012 Chin. Phys. B 21 055206

  • [1]

    Bailey J E, Chandler G A, Slutz S A, Golovkin I, Lake P W, MacFarlane J J, Mancini R C, Burris-Mog T J, Cooper G, Leeper R J, Mehlhorn T A, Moore T C, Nash T J, Nielsen D S, Ruiz C L, Schroen D G, Varnum W A 2004 Phys. Rev. Lett. 92 085002

    [2]

    Ruiz C L, Cooper G W, Slutz S A, Bailey J E, Chandler G A, Nash T J, Mehlhorn T A, Leeper R J, Fehl D, Nelson A J, Franklin J, Ziegler L 2004 Phys. Rev. Lett. 93 015001

    [3]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [4]

    Amplefor D J, Jennings C A, Hall G N, Lebedev S V, Bland S N, Bott S C, Suzuki-Vidal F, Palmer J B A, Chittenden J P, Cuneo M E, Frank A, Blackman E G, Ciardi A 2010 Phys. Plasmas 17 056315

    [5]

    Matzen M K 1997 Phys. Plasmas 5 1519

    [6]

    Bailey J E, Rochau G A, Mancini R C, Lglesias C A, MacFarlane J J, Golovkin I E, Blancard C, Cosse P, Faussurier G 2009 Phys. Plasmas 16 058101

    [7]

    Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seamen J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, McKenney J L, Mock R C, Vargas M, Wagoner T 1998 Phys. Plasmas 5 2105

    [8]

    Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, L’Eplattenier P, Chandler G A, Seamen J F, Struve K W 1998 Phys. Rev. Lett. 81 4883

    [9]

    Martin M R, Lemke R W, McBride R D, Davis J P, Dolan D H, Knudson M D, Cochrane K R, Sinars D B, Smith I C, Savage M, Stygar W A, Killebrew K, Flicker D G, Herrmann M C 2012 Phys. Plasmas 19 056310

    [10]

    Sinars D B, Slutz S A, Herrmann M C, McBride R D, Cuneo M E, Peterson K J, Vesey R A, Nakhleh C, Blue B E, Killebrew K, Schroen D, Tomlinson K, Edens A D, Lopez M R, Smith I C, Shores J, Bigman V, Bennett G R, Atherton B W, Savage M, Stygar W A, Leifeste G T, Porter J L 2010 Phys. Rev. Lett. 105 185001

    [11]

    Huang X B, Yang L B, Li J, Zhou S T, Ren X D, Zhang S Q, Dan J K, Cai H C, Duan S C, Chen G H, Zhang Z W, Ouyang K, Li J, Zhang Z H, Zhou R G, Wang G L 2012 Chin. Phys. B 21 055206

  • [1] 肖德龙, 戴自换, 孙顺凯, 丁宁, 张扬, 邬吉明, 尹丽, 束小建. Z箍缩动态黑腔驱动靶丸内爆动力学.  , 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [2] 陈忠旺, 宁成. 基于MULTI2D-Z程序的Z箍缩动态黑腔形成过程模拟.  , 2017, 66(12): 125202. doi: 10.7498/aps.66.125202
    [3] 席晓文, 柴常春, 刘阳, 杨银堂, 樊庆扬. 外界条件在电磁脉冲对GaAs赝高电子迁移率晶体管损伤过程中的影响.  , 2017, 66(7): 078401. doi: 10.7498/aps.66.078401
    [4] 张扬, 孙顺凯, 丁宁, 李正宏, 束小建. 准球形电磁内爆动力学研究及能量定标关系浅析.  , 2017, 66(10): 105203. doi: 10.7498/aps.66.105203
    [5] 蒲昱东, 康洞国, 黄天晅, 高耀明, 陈家斌, 唐琦, 宋仔峰, 彭晓世, 陈伯伦, 蒋炜, 余波, 晏骥, 江少恩, 刘慎业, 杨家敏, 丁永坤. 小收缩比内爆实验初步研究.  , 2014, 63(12): 125211. doi: 10.7498/aps.63.125211
    [6] 薛创, 丁宁, 孙顺凯, 肖德龙, 张扬, 黄俊, 宁成, 束小建. 脉冲功率驱动器与Z箍缩负载耦合的全电路数值模拟.  , 2014, 63(12): 125207. doi: 10.7498/aps.63.125207
    [7] 叶繁, 薛飞彪, 褚衍运, 司粉妮, 胡青元, 宁家敏, 周林, 杨建伦, 徐荣昆, 李正宏, 许泽平. 双层丝阵Z箍缩电流分配实验研究.  , 2013, 62(17): 175203. doi: 10.7498/aps.62.175203
    [8] 郭帆, 李永东, 王洪广, 刘纯亮, 呼义翔, 张鹏飞, 马萌. Z箍缩装置外磁绝缘传输线全尺寸粒子模拟研究.  , 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [9] 江少恩, 缪文勇, 况龙钰. 神光Ⅱ与神光Ⅲ原型上的辐射驱动小收缩比内爆靶设计.  , 2011, 60(5): 055206. doi: 10.7498/aps.60.055206
    [10] 盛亮, 邱孟通, 黑东炜, 邱爱慈, 丛培天, 王亮平, 魏福利. 丝阵负载Z箍缩内爆动力学研究.  , 2011, 60(5): 055205. doi: 10.7498/aps.60.055205
    [11] 盛亮, 王亮平, 李阳, 彭博栋, 张美, 吴坚, 王培伟, 魏福利, 袁媛. 平面丝阵负载Z箍缩内爆动力学一维图像诊断.  , 2011, 60(10): 105205. doi: 10.7498/aps.60.105205
    [12] 夏广新, 章法强, 许泽平, 徐荣昆, 陈进川, 宁家敏. 单层丝阵负载Z箍缩内爆辐射特性研究.  , 2010, 59(1): 97-102. doi: 10.7498/aps.59.97
    [13] 吴刚, 邱爱慈, 吕敏, 蒯斌, 王亮平, 丛培天, 邱孟通, 雷天时, 孙铁平, 郭宁, 韩娟娟, 张信军, 黄涛, 张国伟, 乔开来. “强光一号”Al丝阵Z箍缩产生K层辐射实验研究.  , 2009, 58(7): 4779-4786. doi: 10.7498/aps.58.4779
    [14] 宁 成, 丁 宁, 杨震华. “强光一号”装置上部分Z箍缩实验结果的物理分析.  , 2007, 56(1): 338-345. doi: 10.7498/aps.56.338
    [15] 王 亮, 曹金祥, 王 艳, 牛田野, 王 舸, 朱 颖. 电磁脉冲在实验室等离子体中传播时间的实验研究.  , 2007, 56(3): 1429-1433. doi: 10.7498/aps.56.1429
    [16] 张 扬, 丁 宁. 轴向流对Z箍缩等离子体稳定性的影响.  , 2006, 55(5): 2333-2339. doi: 10.7498/aps.55.2333
    [17] 宁 成, 丁 宁, 刘 全, 杨震华. 双层钨丝阵的Z箍缩动力学过程研究.  , 2006, 55(7): 3488-3493. doi: 10.7498/aps.55.3488
    [18] 黄显宾, 杨礼兵, 顾元朝, 邓建军, 周荣国, 邹 杰, 周少彤, 张思群, 陈光华, 畅里华, 李丰平, 欧阳凯, 李 军, 杨 亮, 王 雄, 张朝辉. 氩气Z箍缩内爆动力学过程实验研究.  , 2006, 55(4): 1900-1906. doi: 10.7498/aps.55.1900
    [19] 宁 成, 李正宏, 华欣生, 徐荣昆, 彭先觉, 许泽平, 杨建伦, 郭 存, 蒋世伦, 丰树平, 杨礼兵, 晏成立, 宋凤军, V. P. Smirnov, Yu. G. Kalinin, A. S. Kingsep, A. S. Chernenko, E. V. Grabovsky. 铝-钨丝混编阵的Z-箍缩实验研究.  , 2004, 53(7): 2244-2249. doi: 10.7498/aps.53.2244
    [20] 宁 成, 杨震华, 丁 宁. Z箍缩内爆过程中的能量转换机制研究.  , 2003, 52(2): 415-420. doi: 10.7498/aps.52.415
计量
  • 文章访问数:  6458
  • PDF下载量:  354
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-06
  • 修回日期:  2013-09-10
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map