-
采用气相聚合法制备了有机/无机杂化的硅/聚3, 4-乙撑二氧噻吩核/壳纳米线阵列(SiNWs/PEDOT)太阳能电池. 相对平面结构Si/PEDOT太阳能电池, SiNWs/PEDOT太阳能电池的能量转换效率提升了7倍, 达到3.23%.对比分析反射光谱、I-V曲线及外量子效率的实验结果, 发现SiNWs/PEDOT太阳能电池性能改进的主要原因可归结为: 气相聚合法能够有效地制备出SiNWs/PEDOT电池的核/壳纳米线阵列结构, 使得器件具有高光捕获、高比结面积和高电荷收集效率.
-
关键词:
- Si/PEDOT核/壳纳米线结构 /
- 太阳能电池 /
- 气相聚合
The silicon/poly(3, 4-ethylenedioxythiophene) core/shell organic/inorganic nanowire array (SiNWs/PEDOT) hybrid heterojunction solar cells are successfully fabricated by silver-assisted chemical etching method and vapor phase polymerization processes. The SiNWs/PEDOT hybrid solar cell shows that the performance is improved greatly and an excellent power conversion efficiency of 3.23% is achieved, which is as seven times as large as that of the planar cell without the nanowire structure. In addition, the studies of the reflectance, the I-V curve and the external quantum efficiency show that the great enhancement of performance for the SiNWs/PEDOT cell is due to the fact that the Si/PEDOT core/shell nanowire structure is successfully fabricated by vapor phase polymerization method, resulting in a high light trapping effect, a large junction area and an enhancement of the carrier collection efficiency.[1] Chen Z X, Wang X L 2007 Inform. Record. Mater. 8 41 (in Chinese) [成志秀, 王晓丽 2007 信息记录材料 8 41]
[2] Zhang X, Liu B W, Xia Y, Li C B, Liu J, Shen Z N 2012 Acta Phys. Sin. 61 187303 (in Chinese) [张祥, 刘邦武, 夏洋, 李超波, 刘杰, 沈泽南 2012 61 187303]
[3] Zhou J, Sun Y T, Sun T D, Liu X, Song W J 2011 Acta Phys. Sin. 60 088802 (in Chinese) [周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰 2011 60 088802]
[4] Garnett E C, Yang P D 2008 J. Am. Chem. Soc. 130 9224
[5] Shiu S C, Lin S B, Hung S C, Lin C F 2011 Appl. Surf. Sci. 257 1829
[6] He L N, Jiang C Y, Wang H, Lai D, Rusli D 2012 ACS Appl. Mater. Inter. 4 1704
[7] Shiu S C, Chao J J, Hung S C, Yeh C L, Lin C F 2010 Chem. Mater. 22 3108
[8] Lu W H, Wang C W, Yue W, Chen L W 2011 Nanoscale 3 3631
[9] Lu W H, Chen Q, Wang B, Chen L W 2012 Appl. Phys. Lett. 100 023112
[10] Syu H J, Shiu S C, Lin C F 2012 Sol. Energy Mater. Sol. Cells 98 267
[11] He L N, Rusli, Jiang C Y, Wang H, Lai D 2011 IEEE Electron Dev. Lett. 32 1406
[12] Madl C M, Kariuki P N, Gendron J, Piper L F J, Jones Jr W E 2011 Synthetic Metals 161 1159
[13] Huang Z P, Geyer N, Werner P, Boor J D, Gosele U 2011 Adv. Mater. 23 285
[14] Zhang M L, Peng K Q, Fan X, Jie J S, Zhang R Q, Lee S T, Wong N B 2008 J. Phys. Chem. C 112 4444
[15] Li J, Liu J C, Gao C J 2011 Acta Phys. Sin. 60 078803 (in Chinese) [李蛟, 刘俊成, 高从堦 2011 60 078803]
[16] Dash W C, Newman R 1955 Phys. Rev. 99 1151
-
[1] Chen Z X, Wang X L 2007 Inform. Record. Mater. 8 41 (in Chinese) [成志秀, 王晓丽 2007 信息记录材料 8 41]
[2] Zhang X, Liu B W, Xia Y, Li C B, Liu J, Shen Z N 2012 Acta Phys. Sin. 61 187303 (in Chinese) [张祥, 刘邦武, 夏洋, 李超波, 刘杰, 沈泽南 2012 61 187303]
[3] Zhou J, Sun Y T, Sun T D, Liu X, Song W J 2011 Acta Phys. Sin. 60 088802 (in Chinese) [周骏, 孙永堂, 孙铁囤, 刘晓, 宋伟杰 2011 60 088802]
[4] Garnett E C, Yang P D 2008 J. Am. Chem. Soc. 130 9224
[5] Shiu S C, Lin S B, Hung S C, Lin C F 2011 Appl. Surf. Sci. 257 1829
[6] He L N, Jiang C Y, Wang H, Lai D, Rusli D 2012 ACS Appl. Mater. Inter. 4 1704
[7] Shiu S C, Chao J J, Hung S C, Yeh C L, Lin C F 2010 Chem. Mater. 22 3108
[8] Lu W H, Wang C W, Yue W, Chen L W 2011 Nanoscale 3 3631
[9] Lu W H, Chen Q, Wang B, Chen L W 2012 Appl. Phys. Lett. 100 023112
[10] Syu H J, Shiu S C, Lin C F 2012 Sol. Energy Mater. Sol. Cells 98 267
[11] He L N, Rusli, Jiang C Y, Wang H, Lai D 2011 IEEE Electron Dev. Lett. 32 1406
[12] Madl C M, Kariuki P N, Gendron J, Piper L F J, Jones Jr W E 2011 Synthetic Metals 161 1159
[13] Huang Z P, Geyer N, Werner P, Boor J D, Gosele U 2011 Adv. Mater. 23 285
[14] Zhang M L, Peng K Q, Fan X, Jie J S, Zhang R Q, Lee S T, Wong N B 2008 J. Phys. Chem. C 112 4444
[15] Li J, Liu J C, Gao C J 2011 Acta Phys. Sin. 60 078803 (in Chinese) [李蛟, 刘俊成, 高从堦 2011 60 078803]
[16] Dash W C, Newman R 1955 Phys. Rev. 99 1151
计量
- 文章访问数: 6490
- PDF下载量: 853
- 被引次数: 0