-
利用具有钙钛矿结构的有机-无机杂化卤化物制备的太阳能电池, 由于具有溶液可加工性和高光电转换效率, 受到了广泛关注. 在目前报道的最高光电转换效率的器件中, 采用了CH3NH3PbI(3-x)Clx碘氯混合钙钛矿作为吸光层, 据报道在这种材料中光电子的扩散长度可以超过1 μm. 本文综述了在CH3NH3PbI(3-x)Clx方面现有的研究工作, 指出了薄膜制备条件的重要性, 并研究了CH3NH3I在PbCl2/CH3NH3I热解法制备CH3NH3PbI(3-x)Clx吸光层中的作用. 扫描电子显微镜研究表明CH3NH3I加入量为PbCl2的2倍到2.75倍时, CH3NH3I加入量的增加可以提高CH3NH3PbI(3-x)Clx吸光层的覆盖度和结晶度, CH3NH3I加入量进一步增加到3倍时, 形貌变化不大. X射线光电子能谱的数据证实了CH3NH3I加入量对覆盖度的影响, 并显示在CH3NH3I加入量大于PbCl2的2.5倍以后, CH3NH3PbI(3-x)Clx中氯的掺入量急剧下降. 光电测试表明器件性能随CH3NH3I加入量增加而增加, 在CH3NH3I/PbCl2为3/1时达到最高, 加入量略小于3/1对性能影响不大.Perovskite solar cell, which is prepared by using the organic-inorganic hybrid halide CH3NH3PbX3 (X = I, Cl and Br), receives widespread attention because of its solution processability and high photon-to-electron conversion efficiency. The highest reported photon-to-electron conversion efficiency is that using CH3NH3PbI(3-x)Clx as an absorber. It is reported that the diffusion length is greater than 1 micrometer in this mixed halide perovskite. The method most commonly used in preparing CH3NH3PbI(3-x)Clx film is the one-step pyrolysis method, which has a complex reaction mechanism. In this paper, we review the work about CH3NH3PbI(3-x)Clx perovskite, in which emphasis is put on the importance of the preparation process, and analyze the role of CH3NH3I in the one-step pyrolysis method for fabricating the CH3NH3PbI(3-x)Clxperovskite layer. Scanning electron microscope images show that CH3NH3I can improve the coverage and crystallinity of the perovskite layer for precursors in low CH3NH3I concentrations (CH3NH3I/PbCl2=2.0 and 2.5). For precursors in high CH3NH3I concentrations (CH3NH3I/PbCl2=2.75 and 3), this change is not obvious. X-ray photoelectron spectroscopy confirms the change of coverage, and indicates that the content of Cl in CH3NH3PbI(3-x)Clx will be less than 5% for precursors with high CH3NH3I concentrations (CH3NH3I/PbCl2>2.5). Perovskite solar cells based on CH3NH3PbI(3-x)Clx with different Cl dopant concentrations are studied by photoelectric measurements. Photocurrent density-photovoltage curves show that the performance of the devices increases with the increase of CH3NH3I concentration in precursors. And the incident-photon-to-current conversion efficiency (IPCE) measurements indicate that the devices fabricated by using precursors with high CH3NH3I concentration have a relatively high external quantum efficiency. These results imply that only CH3NH3PbI(3-x)Clx with very low Cl dopant concentration will be effective material for photovoltaic application. To further understand the difference between these devices during working condition, transient photovoltage/photocurrent measurements are carried out to investigate the carrier dynamics in the device. Transient photovoltage decay curves indicate that high Cl dopant concentration may decrease the photoelectron lifetime in CH3NH3PbI(3-x)Clx, and results in a relative low open-circuit photovoltage in the corresponding photovoltaic devices. The charge transport time in the devices of various Cl concentrations are studied by transient photocurrent decay method. CH3NH3PbI(3-x)Clx with low Cl dopant concentration has relative short transport time, which can avoid the recombination process and increase the charge collection efficiency.
-
Keywords:
- organic-inorganic hybrid materials /
- perovskite /
- solar cells /
- CH3NH3I
[1] Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese) [於黄忠 2013 62 027201]
[2] Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese) [王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖 2013 62 058801]
[3] Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 62 048401]
[4] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[5] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Y um J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591
[6] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643
[7] Lv S L, Pang S P, Zhou Y Y, Padture N P, Hu H, Wang L, Zhou X H, Zhu H M, Zhang L X, Huang C S, Cui G L 2014 Phys. Chem. Chem. Phys. 16 19206
[8] Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J, Grätzel M 2014 Angew. Chem. Int. Ed. 53 3151
[9] Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80
[10] Mei A, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295
[11] Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. photonics 8 489
[12] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004
[13] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764
[14] Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542
[15] Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505
[16] Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739
[17] Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142
[18] Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761
[19] You J B, Hong Z R, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y 2014 ACS Nano 8 1674
[20] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
[21] Roiati V, Colella S, Lerario G, Marco L D, Rizzo A, Listorti A, Gigli G 2014 Energy Environ. Sci 7 1889
[22] Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Hisayo M, Hayase S 2014 Chem. Phys. Chem. 15 1062
[23] Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kenji K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984
[24] Chavhan S, Miguel O, Grande H J, Pedro V G, Sanchez R S, Barea E M, Sero I M, Zaera R T 2014 J. Mater. Chem. A 2 12754
[25] Giacomo F D, Razza S, Matteocci F, Epifanio A, Li coccia S, Brown T M, Carlo A D 2014 J. Power Sources 251 152
[26] Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505
[27] Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G 2014 Energy Environ. Sci. 7 2944
[28] Matteocci F, Razza S, Giacomo F D, Casaluci S, Mincuzzi G, Brown T M, Epifanio A, Licoccia S, Carlo A D 2014 Phys. Chem. Chem. Phys. 16 3918
[29] Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151
[30] Dualeh A, Tetreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250
[31] Liang P W, Liao C Y, Chueh C C, Zuo F, Wliilams S T, Xin X K, Lin J J, Jen A K Y 2014 Adv. Mater. 26 3748
[32] Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, Angelis F D, Mosca R 2013 Chem. Mater. 25 4613
[33] Park B, Philippe B, Gustafsson T, Sveinbjornsson K, Hagfeldt A, Johansson E M J, Boschloo G 2014 Chem. Mater. 26 4466
[34] Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu L, Wu H J, Li D M, Luo Y H, Meng Q B 2014 Appl. Phys. Lett. 104 063901
[35] Ku Z L, Rong Y G, Xu M, Liu T F, Han H W 2013 Sci. Rep 3 3132
[36] Nakade S, Kanzaki T, Wada Y, Yanagida S 2005 Langmuir 21 10803
-
[1] Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese) [於黄忠 2013 62 027201]
[2] Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese) [王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖 2013 62 058801]
[3] Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 62 048401]
[4] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[5] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Y um J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591
[6] Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643
[7] Lv S L, Pang S P, Zhou Y Y, Padture N P, Hu H, Wang L, Zhou X H, Zhu H M, Zhang L X, Huang C S, Cui G L 2014 Phys. Chem. Chem. Phys. 16 19206
[8] Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J, Grätzel M 2014 Angew. Chem. Int. Ed. 53 3151
[9] Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80
[10] Mei A, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295
[11] Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. photonics 8 489
[12] Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004
[13] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764
[14] Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542
[15] Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505
[16] Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739
[17] Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142
[18] Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761
[19] You J B, Hong Z R, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y 2014 ACS Nano 8 1674
[20] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
[21] Roiati V, Colella S, Lerario G, Marco L D, Rizzo A, Listorti A, Gigli G 2014 Energy Environ. Sci 7 1889
[22] Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Hisayo M, Hayase S 2014 Chem. Phys. Chem. 15 1062
[23] Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kenji K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984
[24] Chavhan S, Miguel O, Grande H J, Pedro V G, Sanchez R S, Barea E M, Sero I M, Zaera R T 2014 J. Mater. Chem. A 2 12754
[25] Giacomo F D, Razza S, Matteocci F, Epifanio A, Li coccia S, Brown T M, Carlo A D 2014 J. Power Sources 251 152
[26] Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505
[27] Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G 2014 Energy Environ. Sci. 7 2944
[28] Matteocci F, Razza S, Giacomo F D, Casaluci S, Mincuzzi G, Brown T M, Epifanio A, Licoccia S, Carlo A D 2014 Phys. Chem. Chem. Phys. 16 3918
[29] Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151
[30] Dualeh A, Tetreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250
[31] Liang P W, Liao C Y, Chueh C C, Zuo F, Wliilams S T, Xin X K, Lin J J, Jen A K Y 2014 Adv. Mater. 26 3748
[32] Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, Angelis F D, Mosca R 2013 Chem. Mater. 25 4613
[33] Park B, Philippe B, Gustafsson T, Sveinbjornsson K, Hagfeldt A, Johansson E M J, Boschloo G 2014 Chem. Mater. 26 4466
[34] Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu L, Wu H J, Li D M, Luo Y H, Meng Q B 2014 Appl. Phys. Lett. 104 063901
[35] Ku Z L, Rong Y G, Xu M, Liu T F, Han H W 2013 Sci. Rep 3 3132
[36] Nakade S, Kanzaki T, Wada Y, Yanagida S 2005 Langmuir 21 10803
计量
- 文章访问数: 8362
- PDF下载量: 2439
- 被引次数: 0