搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用

夏祥 刘喜哲

引用本文:
Citation:

CH3NH3I在制备CH3NH3PbI(3-x)Clx钙钛矿太阳能电池中的作用

夏祥, 刘喜哲

Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells

Xia Xiang, Liu Xi-Zhe
PDF
导出引用
  • 利用具有钙钛矿结构的有机-无机杂化卤化物制备的太阳能电池, 由于具有溶液可加工性和高光电转换效率, 受到了广泛关注. 在目前报道的最高光电转换效率的器件中, 采用了CH3NH3PbI(3-x)Clx碘氯混合钙钛矿作为吸光层, 据报道在这种材料中光电子的扩散长度可以超过1 μm. 本文综述了在CH3NH3PbI(3-x)Clx方面现有的研究工作, 指出了薄膜制备条件的重要性, 并研究了CH3NH3I在PbCl2/CH3NH3I热解法制备CH3NH3PbI(3-x)Clx吸光层中的作用. 扫描电子显微镜研究表明CH3NH3I加入量为PbCl2的2倍到2.75倍时, CH3NH3I加入量的增加可以提高CH3NH3PbI(3-x)Clx吸光层的覆盖度和结晶度, CH3NH3I加入量进一步增加到3倍时, 形貌变化不大. X射线光电子能谱的数据证实了CH3NH3I加入量对覆盖度的影响, 并显示在CH3NH3I加入量大于PbCl2的2.5倍以后, CH3NH3PbI(3-x)Clx中氯的掺入量急剧下降. 光电测试表明器件性能随CH3NH3I加入量增加而增加, 在CH3NH3I/PbCl2为3/1时达到最高, 加入量略小于3/1对性能影响不大.
    Perovskite solar cell, which is prepared by using the organic-inorganic hybrid halide CH3NH3PbX3 (X = I, Cl and Br), receives widespread attention because of its solution processability and high photon-to-electron conversion efficiency. The highest reported photon-to-electron conversion efficiency is that using CH3NH3PbI(3-x)Clx as an absorber. It is reported that the diffusion length is greater than 1 micrometer in this mixed halide perovskite. The method most commonly used in preparing CH3NH3PbI(3-x)Clx film is the one-step pyrolysis method, which has a complex reaction mechanism. In this paper, we review the work about CH3NH3PbI(3-x)Clx perovskite, in which emphasis is put on the importance of the preparation process, and analyze the role of CH3NH3I in the one-step pyrolysis method for fabricating the CH3NH3PbI(3-x)Clxperovskite layer. Scanning electron microscope images show that CH3NH3I can improve the coverage and crystallinity of the perovskite layer for precursors in low CH3NH3I concentrations (CH3NH3I/PbCl2=2.0 and 2.5). For precursors in high CH3NH3I concentrations (CH3NH3I/PbCl2=2.75 and 3), this change is not obvious. X-ray photoelectron spectroscopy confirms the change of coverage, and indicates that the content of Cl in CH3NH3PbI(3-x)Clx will be less than 5% for precursors with high CH3NH3I concentrations (CH3NH3I/PbCl2>2.5). Perovskite solar cells based on CH3NH3PbI(3-x)Clx with different Cl dopant concentrations are studied by photoelectric measurements. Photocurrent density-photovoltage curves show that the performance of the devices increases with the increase of CH3NH3I concentration in precursors. And the incident-photon-to-current conversion efficiency (IPCE) measurements indicate that the devices fabricated by using precursors with high CH3NH3I concentration have a relatively high external quantum efficiency. These results imply that only CH3NH3PbI(3-x)Clx with very low Cl dopant concentration will be effective material for photovoltaic application. To further understand the difference between these devices during working condition, transient photovoltage/photocurrent measurements are carried out to investigate the carrier dynamics in the device. Transient photovoltage decay curves indicate that high Cl dopant concentration may decrease the photoelectron lifetime in CH3NH3PbI(3-x)Clx, and results in a relative low open-circuit photovoltage in the corresponding photovoltaic devices. The charge transport time in the devices of various Cl concentrations are studied by transient photocurrent decay method. CH3NH3PbI(3-x)Clx with low Cl dopant concentration has relative short transport time, which can avoid the recombination process and increase the charge collection efficiency.
    • 基金项目: 国家自然科学基金(批准号: 51273079)、吉林省科技发展计划项目(批准号: 20150519021JH)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51273079), the Science and Technology Development Program of Jilin Province of China (Grant No. 20150519021JH).
    [1]

    Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese) [於黄忠 2013 62 027201]

    [2]

    Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese) [王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖 2013 62 058801]

    [3]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 62 048401]

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Y um J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [6]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [7]

    Lv S L, Pang S P, Zhou Y Y, Padture N P, Hu H, Wang L, Zhou X H, Zhu H M, Zhang L X, Huang C S, Cui G L 2014 Phys. Chem. Chem. Phys. 16 19206

    [8]

    Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J, Grätzel M 2014 Angew. Chem. Int. Ed. 53 3151

    [9]

    Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80

    [10]

    Mei A, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295

    [11]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. photonics 8 489

    [12]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [13]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [14]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [15]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505

    [16]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [17]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [18]

    Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [19]

    You J B, Hong Z R, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y 2014 ACS Nano 8 1674

    [20]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [21]

    Roiati V, Colella S, Lerario G, Marco L D, Rizzo A, Listorti A, Gigli G 2014 Energy Environ. Sci 7 1889

    [22]

    Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Hisayo M, Hayase S 2014 Chem. Phys. Chem. 15 1062

    [23]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kenji K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [24]

    Chavhan S, Miguel O, Grande H J, Pedro V G, Sanchez R S, Barea E M, Sero I M, Zaera R T 2014 J. Mater. Chem. A 2 12754

    [25]

    Giacomo F D, Razza S, Matteocci F, Epifanio A, Li coccia S, Brown T M, Carlo A D 2014 J. Power Sources 251 152

    [26]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505

    [27]

    Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G 2014 Energy Environ. Sci. 7 2944

    [28]

    Matteocci F, Razza S, Giacomo F D, Casaluci S, Mincuzzi G, Brown T M, Epifanio A, Licoccia S, Carlo A D 2014 Phys. Chem. Chem. Phys. 16 3918

    [29]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [30]

    Dualeh A, Tetreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250

    [31]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Wliilams S T, Xin X K, Lin J J, Jen A K Y 2014 Adv. Mater. 26 3748

    [32]

    Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, Angelis F D, Mosca R 2013 Chem. Mater. 25 4613

    [33]

    Park B, Philippe B, Gustafsson T, Sveinbjornsson K, Hagfeldt A, Johansson E M J, Boschloo G 2014 Chem. Mater. 26 4466

    [34]

    Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu L, Wu H J, Li D M, Luo Y H, Meng Q B 2014 Appl. Phys. Lett. 104 063901

    [35]

    Ku Z L, Rong Y G, Xu M, Liu T F, Han H W 2013 Sci. Rep 3 3132

    [36]

    Nakade S, Kanzaki T, Wada Y, Yanagida S 2005 Langmuir 21 10803

  • [1]

    Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese) [於黄忠 2013 62 027201]

    [2]

    Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese) [王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖 2013 62 058801]

    [3]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 62 048401]

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Y um J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [6]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [7]

    Lv S L, Pang S P, Zhou Y Y, Padture N P, Hu H, Wang L, Zhou X H, Zhu H M, Zhang L X, Huang C S, Cui G L 2014 Phys. Chem. Chem. Phys. 16 19206

    [8]

    Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J, Grätzel M 2014 Angew. Chem. Int. Ed. 53 3151

    [9]

    Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80

    [10]

    Mei A, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295

    [11]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. photonics 8 489

    [12]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [13]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [14]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [15]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505

    [16]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [17]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [18]

    Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [19]

    You J B, Hong Z R, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y 2014 ACS Nano 8 1674

    [20]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [21]

    Roiati V, Colella S, Lerario G, Marco L D, Rizzo A, Listorti A, Gigli G 2014 Energy Environ. Sci 7 1889

    [22]

    Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Hisayo M, Hayase S 2014 Chem. Phys. Chem. 15 1062

    [23]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kenji K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [24]

    Chavhan S, Miguel O, Grande H J, Pedro V G, Sanchez R S, Barea E M, Sero I M, Zaera R T 2014 J. Mater. Chem. A 2 12754

    [25]

    Giacomo F D, Razza S, Matteocci F, Epifanio A, Li coccia S, Brown T M, Carlo A D 2014 J. Power Sources 251 152

    [26]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505

    [27]

    Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G 2014 Energy Environ. Sci. 7 2944

    [28]

    Matteocci F, Razza S, Giacomo F D, Casaluci S, Mincuzzi G, Brown T M, Epifanio A, Licoccia S, Carlo A D 2014 Phys. Chem. Chem. Phys. 16 3918

    [29]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [30]

    Dualeh A, Tetreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250

    [31]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Wliilams S T, Xin X K, Lin J J, Jen A K Y 2014 Adv. Mater. 26 3748

    [32]

    Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, Angelis F D, Mosca R 2013 Chem. Mater. 25 4613

    [33]

    Park B, Philippe B, Gustafsson T, Sveinbjornsson K, Hagfeldt A, Johansson E M J, Boschloo G 2014 Chem. Mater. 26 4466

    [34]

    Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu L, Wu H J, Li D M, Luo Y H, Meng Q B 2014 Appl. Phys. Lett. 104 063901

    [35]

    Ku Z L, Rong Y G, Xu M, Liu T F, Han H W 2013 Sci. Rep 3 3132

    [36]

    Nakade S, Kanzaki T, Wada Y, Yanagida S 2005 Langmuir 21 10803

  • [1] 仲婷婷, 郝会颖. 基于大气环境下全无机钙钛矿薄膜及碳基太阳能电池的组分调控和添加剂工程.  , 2024, 73(23): . doi: 10.7498/aps.73.20241439
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究.  , 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] 刘恒, 李晔, 杜梦超, 仇鹏, 何荧峰, 宋祎萌, 卫会云, 朱晓丽, 田丰, 彭铭曾, 郑新和. AlGaN合金的原子层沉积及其在量子点敏化太阳能电池的应用.  , 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [4] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质.  , 2022, 71(1): 017101. doi: 10.7498/aps.71.20211599
    [5] 李斌, 苗向阳. 单个CsPbBr3钙钛矿量子点的荧光闪烁特性.  , 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [6] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质.  , 2021, (): . doi: 10.7498/aps.70.20211599
    [7] 张翱, 张春秀, 张春梅, 田益民, 闫君, 孟涛. CH3NH3多聚体的形成对有机-无机杂化钙钛矿太阳能电池性能的影响.  , 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [8] 李家森, 梁春军, 姬超, 宫宏康, 宋奇, 张慧敏, 刘宁. 在空穴传输层聚(3-己基噻吩)中添加1, 8-二碘辛烷改善碳基钙钛矿太阳能电池的性能.  , 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [9] 宋蕊, 冯凯, 林上金, 何曼丽, 仝亮. 钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控.  , 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [10] 王基铭, 陈科, 谢伟广, 时婷婷, 刘彭义, 郑毅帆, 朱瑞. 溶液法制备全无机钙钛矿太阳能电池的研究进展.  , 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [11] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池.  , 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [12] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展.  , 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [13] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望.  , 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [14] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究.  , 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [15] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题.  , 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [16] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨.  , 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [17] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展.  , 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [18] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响.  , 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [19] 李小娟, 韦尚江, 吕文辉, 吴丹, 李亚军, 周文政. 一种新方法制备硅/聚(3, 4-乙撑二氧噻吩)核/壳纳米线阵列杂化太阳能电池.  , 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [20] 向 军, 李莉萍, 苏文辉. 钙钛矿型氧离子导体KNb1-xMgxO3-δ的制备和表征.  , 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
计量
  • 文章访问数:  8362
  • PDF下载量:  2439
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2014-11-28
  • 刊出日期:  2015-02-05

/

返回文章
返回
Baidu
map