-
Rare-earth elements possess unique atomic structures characterized by multiple unpaired 4f orbital electrons in inner shells, high atomic magnetic moments, and strong spin-orbit coupling. These attributes endow them with rich electronic energy levels, enabling the formation of compounds with diverse valence states and coordination environments. Consequently, rare-earth materials often exhibit exceptional magnetic properties and complex magnetic domain structures, making them critical for high-tech industrial development. The intricate magnetic configurations, diverse types of magnetic coupling, and direct/indirect magnetic exchange interactions in these materials not only facilitate the development of novel functional devices but also pose significant challenges to fundamental research. With the rapid advancement of data mining techniques, the emergence of big data and artificial intelligence has provided researchers with a new approach to efficiently analyze vast experimental and computational datasets, thereby accelerating the exploration and development of rare-earth magnetic materials. This paper focuses on rare-earth permanent magnetic materials, rare-earth magnetocaloric materials, and rare-earth magnetostrictive materials, detailing the application progress of data mining techniques in property prediction, composition and process optimization, and microstructural analysis. It also delves into current challenges and future trends, aiming to provide a theoretical foundation for deepening the integration of data mining technologies with rare-earth magnetic material research.
-
Keywords:
- Data mining /
- Rare earth magnetic material /
- Machine learning /
-
[1] 中华人民共和国国务院2024-06-29 稀土管理条例https://www.gov.cn/zhengce/zhengceku/202406/content_6960153.htm
[2] 中华人民共和国国务院 2023-12-26中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要https://www.gov.cn/zhuanti/shisiwuguihua/sdb.htm
[3] Tai D Q, Li B, Xue H Y, Zheng T, Wu J G 2024 Acta Mater. 262 119411
[4] Swamynadhan M J, O'Hara A, Ghosh S, Pantelides S T 2024 Adv. Funct. Mater. 34 2400195
[5] Ding S L, Kang M G, Legrand W, Gambardella P 2024 Phys. Rev. Lett. 132 236702
[6] Deng X W, Wu L Y, Zhao R, Wang J O, Zhao L N 2024 Acta Phys. Sin. 73 210701(邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜 2024 73 210701)
[7] Möller J J, Körner W, Krugel G, Urban D F, Elsässer C 2018 Acta Mater. 153 53
[8] Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A. Nature 559 547
[9] Zhang Q, Tan W, Ning Y Q, Nie G Z, Cai M Q, Wang J N, Zhu H P, Zhao Y Q 2024 Acta Phys. Sin. 73 230201(张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清 2024 73 230201)
[10] Wang Z, Sun Z H, Yin H, Liu X H, Wang J L, Zhao H T, Pang C H, Wu T, Li S Z, Yin Z Y, Yu X F 2022 Adv. Mater. 34 2104113
[11] Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lyu D S 2019 Acta Phys. Sin. 68 130701(彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 68 130701)
[12] Li R 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) [李锐 2018博士学位论文(北京:中国科学院大学)]
[13] Kovacs A, Fischbacher J, Oezelt H, Kornell A, Ali Q, Gusenbauer M, Yano M, Sakuma N, Kinoshita A, Shoji T, Kato A, Hong Y, Grenier S, Devillers T, Dempsey N M, Fukushima T, Akai H, Kawashima N, Miyake T, Schrefl T 2023 Front. Mater. 9 1094055
[14] Hosokawa H, Calvert E L, Shimojima K 2021 J. Magn. Magn. Mater. 526 167651
[15] Guo K, Lu H, Zhao Z, Tang F W, Wang H B, Song X Y 2022 Comp. Mater. Sci. 205 111232
[16] Wen J T, Hu H G, An J S, Han T, Hu J F 2024 J. Supercond. Nov. Magn. 37 1443
[17] Liu R S, Wang L C, Xu Z Y, Qin C Y, Li Z Y, Yu X, Liu D, Gong H Y, Zhao T Y, Sun J R, Hu F X, Shen B G 2022 Mater. Today Commun. 32 103996
[18] Nguyen D N, Pham T L, Nguyen V C, Kino H, Miyake T, Dam H C. 2019 J. Phys. Mater. 2 034009
[19] Xu G J, Cheng F, Lu H, Hou C, Song X Y 2024 Acta Mater. 274 120026
[20] Halder A, Rom S, Ghosh A, Dasgupta T S 2020 Phys. Rev. Appl. 14 034024
[21] Lambard G, Sasakib T T, Sodeyama K, Ohkubo T, Hono K 2022 Scripta Mater. 209 114341
[22] Lu S F, Liu Y L, Yin Q S, Chen J F, Wu J, Li J, Zhan P J, Chen Z C 2024 J. Eur. Ceram. Soc. 44 5677
[23] Choudhary A K, Grubesa T, Jansche A, Bernthaler T, Goll D, Schneider G 2024 Acta Mater. 264 119563
[24] Möller J J, Körner W, Krugel G, Urban D F, Elsässer C 2018 Acta Mater. 153 53
[25] Kusne A G, Gao T, Mehta A, Ke L Q, Nguyen M C, Ho K M, Antropov V, Wang C Z, Kramer M J, Long C, Takeuchi I 2014 Sci. Rep. 4 63
[26] Nieves P, Arapan S, Hadjipanayis G C, Niarchos D, Barandiaran J M, Cuesta-López S 2016 Phys. Status Solidi C 13 942
[27] Xia W Y, Sakurai M, Balasubramanian B, Liao T, Wang R H, Zhang C, Sun H J, Ho K M, Chelikowsky J R, Sellmyer D J, Wang C Z 2022 Proc. Natl. Acad. Sci. 119 2204485119
[28] Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R, Shen B G 2018 Chinese Phys. B 27 067503
[29] Zhang B. 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) [张博 2018博士学位论文(北京:中国科学院大学)]
[30] Ucar H, Paudyal D, Choudhary K 2022 Comp. Mater. Sci. 209 111414
[31] Alqahtani A 2024 Sustainability 16 1542
[32] Shamsah S M I 2024 Int. J. Refrig. 168 122
[33] Zhao Q, Yan K L, Cui Z, Wen B Y, Xue F, Li J T, Guo J N, Xu A, Qiao K M, Ye R C, Long Y, Zhang D W, Luo H, Taskaev S, Zhang H 2023 Corros. Sci. 216 111115
[34] Gong J H, Zhang Z M, Zhang C L, Hu P Q, Zhou C, Wang D H, Yang S 2024 Rare Met. 43 2251
[35] Hu P Q, Zhou C, Zhang R S, Ding S D, Guo Y J, Wang B, Xue D Z, Ma Y Z, Dai Z Y, Zhang Y, Tian F H, Yang S 2025 Mater. Design 252 113799
[36] Foggiatto A L, Mizutori Y, Yamazaki T, Sato S, Masuzawa K, Nagaoka R, Taniwaki M, Fujieda S, Suzuki S, Ishiyama K, Fukuda T, Igarashi Y, Mitsumata C, Kotsugi M 2023 IEEE T. Magn. 59 1
[37] Li W, Long L C, Liu J Y, Yang Y 2022 Acta Phys. Sin. 71 060202(黎威, 龙连春, 刘静毅, 杨洋 2022 71 060202)
[38] Liu D, Liu Z X, Zhang J E, Yin Y N, Xi J F, Wang L C, Xiong J F, Zhang M, Zhao T Y, Jin J Y, Sun J R, Hu F X, Shen J, Shen B G 2023 Classification and prediction of skyrmion material based on machine learning. Research 6 0082
[39] Liu D, Song J H, Liu Z X, Zhang J E, Chen W Q, Yin Y N, Xi J F, Zheng X Q, Hao J Z, Zhao T Y, Hu F X, Sun J R, Shen B G 2025 Machine learning study on magnetic structure of rare earth based magnetic materials. Mater. Design 251 113710.
[40] Li X, Shek C H, Liaw P K, Shan G C 2024 Machine learning studies for magnetic compositionally complex alloys: A critical review. Prog. Mater. Sci. 146 101332.
Metrics
- Abstract views: 75
- PDF Downloads: 2
- Cited By: 0