-
Rare-earth elements possess unique atomic structures characterized by multiple unpaired 4f orbital electrons in inner shells, high atomic magnetic moments, and strong spin-orbit coupling. These attributes endow them with rich electronic energy levels, enabling them to form compounds with different valence states and coordination environments. Consequently, rare-earth materials typically exhibit excellent magnetic properties and complex magnetic domain structures, making them critical for the development of high-tech industries. The intricate magnetic configurations, different types of magnetic coupling, and direct/indirect magnetic exchange interactions in these materials not only facilitate the development of novel functional devices but also pose significant challenges to fundamental research. With the rapid advancement of data mining techniques, the emergence of big data and artificial intelligence provides researchers with a new method to efficiently analyze vast experimental and computational datasets, thereby accelerating the exploration and development of rare-earth magnetic materials. This work focuses on rare-earth permanent magnetic materials, rare-earth magnetocaloric materials, and rare-earth magnetostrictive materials, detailing the application progress of data mining techniques in property prediction, composition and process optimization, and microstructural analysis. This work also delves into the current challenges and future trends, aiming to provide a theoretical foundation for deepening the integration of data mining technologies with rare-earth magnetic material research.
-
图 12 单隐层模型SIL的泛化能力评估 (a) 训练样本的相关系数; (b) 训练样本的平均绝对误差; (c) 训练样本的均方根误差; (d) 测试样本的相关系数; (e) 测试样本的平均绝对误差; (f) 测试样本的均方根误差[31]
Figure 12. Generalization capacity evaluation of developed SIL-based models: (a) Training samples coefficient of correlation, (b) training samples mean absolute error, (c) training samples root mean square error, (d) testing samples coefficient of correlation, (e) testing samples mean absolute error, (f) testing samples root mean square error[31].
图 14 ML建模过程及缓蚀剂最佳配比的求解[33] (a) 酸碱度pH算法选择; (b) 腐蚀电流密度J算法选择; (c) 基于线性回归算法pH值的预测值与测量值对比; (d) 基于线性回归算法的J1值; (e) J2值的预测值与测量值对比
Figure 14. ML modeling process and solving the optimal composition of corrosion inhibitor[33]: (a) The pH model algorithm selection; (b) J model algorithm selection; (c) measured-predicted pH value plot for LR algorithm; (d) measured-predicted J1 value plot for LR algorithm; (e) measured-predicted J2 value plot for LR algorithm.
表 1 常用的机器学习算法的优势与缺陷
Table 1. Advantages and disadvantages of commonly used machine learning algorithms.
模型 优势 不足 MLR 简单易懂, 计算效率高; 可解释性强,
参数直接反映特征重要性无法捕捉非线性关系; 对异常值敏感 SVM 擅长处理高维空间中的非线性分类; 小样本数据表现优异 核函数选择依赖经验; 计算成本高, 扩展性差 DT 无需数据标准化; 可视化清晰; 擅长处理分类问题 易过拟合, 需剪枝优化; 对连续特征处理能力有限 RF 抗过拟合能力强, 适合高维数据;
可输出特征重要性, 便于特征选择计算复杂度较高; 对小样本数据表现不佳 K-means 无需标注数据, 自动发现数据模式; 计算效率高 需要预先指定聚类数 GA 全局搜索能力, 避免局部最优; 并行处理, 适合高维问题 计算成本高; 复杂问题的收敛速度慢;
依赖高质量的训练数据粒子群优化
算法(PSO)适用于目标函数不连续的场景; 参数少, 易于与实验工具集成 收敛速度慢; 参数敏感性; 局部搜索能力弱 PCA 有效降维, 保留关键信息; 可视化高维数据的潜在结构 无法捕捉非线性关系; 忽略特征间的相关性 ANN 强大的非线性建模能力; 适用于复杂模式识别,
如图像、分子结构需要大量数据和计算资源; 可解释性差,
存在 “黑箱” 问题CNN 无需人工设计特征; 擅长高维数据处理; 鲁棒性强 计算资源需求大; 数据依赖性; 解释性差 -
[1] 中华人民共和国国务院2024-06-29 稀土管理条例 https://www.gov.cn/zhengce/zhengceku/202406/content_6960153.htm
[2] 中华人民共和国国务院 2023-12-26中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要 https://www.gov.cn/zhuanti/shisiwuguihua/sdb.htm
[3] Tai D Q, Li B, Xue H Y, Zheng T, Wu J G 2024 Acta Mater. 262 119411
Google Scholar
[4] Swamynadhan M J, O'Hara A, Ghosh S, Pantelides S T 2024 Adv. Funct. Mater. 34 2400195
Google Scholar
[5] Ding S L, Kang M G, Legrand W, Gambardella P 2024 Phys. Rev. Lett. 132 236702
Google Scholar
[6] 邓祥文, 伍力源, 赵锐, 王嘉鸥, 赵丽娜 2024 73 210701
Google Scholar
Deng X W, Wu L Y, Zhao R, Wang J O, Zhao L N 2024 Acta Phys. Sin. 73 210701
Google Scholar
[7] Möller J J, Körner W, Krugel G , Urban D F, Elsässer C 2018 Acta Mater. 153 53
[8] Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A. Nature 559 547
[9] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清 2024 73 230201
Google Scholar
Zhang Q, Tan W, Ning Y Q, Nie G Z, Cai M Q, Wang J N, Zhu H P, Zhao Y Q 2024 Acta Phys. Sin. 73 230201
Google Scholar
[10] Wang Z, Sun Z H, Yin H, Liu X H, Wang J L, Zhao H T, Pang C H, Wu T, Li S Z, Yin Z Y, Yu X F 2022 Adv. Mater. 34 2104113
Google Scholar
[11] 彭向凯, 吉经纬, 李琳, 任伟, 项静峰, 刘亢亢, 程鹤楠, 张镇, 屈求智, 李唐, 刘亮, 吕德胜 2019 68 130701
Google Scholar
Peng X K, Ji J W, Li L, Ren W, Xiang J F, Liu K K, Cheng H N, Zhang Z, Qu Q Z, Li T, Liu L, Lü D S 2019 Acta Phys. Sin. 68 130701
Google Scholar
[12] 李锐 2018博士学位论文(北京: 中国科学院大学)
Li R 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences
[13] Kovacs A, Fischbacher J, Oezelt H, Kornell A, Ali Q, Gusenbauer M, Yano M, Sakuma N, Kinoshita A, Shoji T, Kato A, Hong Y, Grenier S, Devillers T, Dempsey N M, Fukushima T, Akai H, Kawashima N, Miyake T, Schrefl T 2023 Front. Mater. 9 1094055
Google Scholar
[14] Hosokawa H, Calvert E L, Shimojima K 2021 J. Magn. Magn. Mater. 526 167651
Google Scholar
[15] Guo K, Lu H, Zhao Z, Tang F W, Wang H B, Song X Y 2022 Comp. Mater. Sci. 205 111232
Google Scholar
[16] Wen J T, Hu H G, An J S, Han T, Hu J F 2024 J. Supercond. Nov. Magn. 37 1443
Google Scholar
[17] Liu R S, Wang L C, Xu Z Y, Qin C Y, Li Z Y, Yu X, Liu D, Gong H Y, Zhao T Y, Sun J R, Hu F X, Shen B G 2022 Mater. Today Commun. 32 103996
Google Scholar
[18] Nguyen D N, Pham T L, Nguyen V C, Kino H, Miyake T, Dam H C 2019 J. Phys. Mater. 2 034009
Google Scholar
[19] Xu G J, Cheng F, Lu H, Hou C, Song X Y 2024 Acta Mater. 274 120026
Google Scholar
[20] Halder A, Rom S, Ghosh A, Dasgupta T S 2020 Phys. Rev. Appl. 14 034024
Google Scholar
[21] Lambard G, Sasakib T T, Sodeyama K, Ohkubo T, Hono K 2022 Scripta Mater. 209 114341
Google Scholar
[22] Lu S F, Liu Y L, Yin Q S, Chen J F, Wu J, Li J, Zhan P J, Chen Z C 2024 J. Eur. Ceram. Soc. 44 5677
Google Scholar
[23] Choudhary A K, Grubesa T, Jansche A, Bernthaler T, Goll D, Schneider G 2024 Acta Mater. 264 119563
Google Scholar
[24] Möller J J, Körner W, Krugel G, Urban D F, Elsässer C 2018 Acta Mater. 153 53
Google Scholar
[25] Kusne A G, Gao T, Mehta A, Ke L Q, Nguyen M C, Ho K M, Antropov V, Wang C Z, Kramer M J, Long C, Takeuchi I 2014 Sci. Rep. 4 63
[26] Nieves P, Arapan S, Hadjipanayis G C, Niarchos D, Barandiaran J M, Cuesta-López S 2016 Phys. Status Solidi C 13 942
Google Scholar
[27] Xia W Y, Sakurai M, Balasubramanian B, Liao T, Wang R H, Zhang C, Sun H J, Ho K M, Chelikowsky J R, Sellmyer D J, Wang C Z 2022 Proc. Natl. Acad. Sci. 119 2204485119
Google Scholar
[28] Zhang B, Zheng X Q, Zhao T Y, Hu F X, Sun J R, Shen B G 2018 Chinese Phys. B 27 067503
Google Scholar
[29] 张博 2018博士学位论文(北京: 中国科学院大学)
Zhang B. 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences
[30] Ucar H, Paudyal D, Choudhary K 2022 Comp. Mater. Sci. 209 111414
Google Scholar
[31] Alqahtani A 2024 Sustainability 16 1542
Google Scholar
[32] Shamsah S M I 2024 Int. J. Refrig. 168 122
Google Scholar
[33] Zhao Q, Yan K L, Cui Z, Wen B Y, Xue F, Li J T, Guo J N, Xu A, Qiao K M, Ye R C, Long Y, Zhang D W, Luo H, Taskaev S, Zhang H 2023 Corros. Sci. 216 111115
Google Scholar
[34] Gong J H, Zhang Z M, Zhang C L, Hu P Q, Zhou C, Wang D H, Yang S 2024 Rare Met. 43 2251
Google Scholar
[35] Hu P Q, Zhou C, Zhang R S, Ding S D, Guo Y J, Wang B, Xue D Z, Ma Y Z, Dai Z Y, Zhang Y, Tian F H, Yang S 2025 Mater. Design 252 113799
Google Scholar
[36] Foggiatto A L, Mizutori Y, Yamazaki T, Sato S, Masuzawa K, Nagaoka R, Taniwaki M, Fujieda S, Suzuki S, Ishiyama K, Fukuda T, Igarashi Y, Mitsumata C, Kotsugi M 2023 IEEE T. Magn. 59 2501604
[37] 黎威, 龙连春, 刘静毅, 杨洋 2022 71 060202
Google Scholar
Li W, Long L C, Liu J Y, Yang Y 2022 Acta Phys. Sin. 71 060202
Google Scholar
[38] Liu D, Liu Z X, Zhang J E, Yin Y N, Xi J F, Wang L C, Xiong J F, Zhang M, Zhao T Y, Jin J Y, Sun J R, Hu F X, Shen J, Shen B G 2023 Research 6 0082
Google Scholar
[39] Liu D, Song J H, Liu Z X, Zhang J E, Chen W Q, Yin Y N, Xi J F, Zheng X Q, Hao J Z, Zhao T Y, Hu F X, Sun J R, Shen B G 2025 Mater. Design 251 113710
Google Scholar
[40] Li X, Shek C H, Liaw P K, Shan G C 2024 Prog. Mater. Sci. 146 101332
Google Scholar
Metrics
- Abstract views: 494
- PDF Downloads: 15
- Cited By: 0