Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interlayer drag effect between graphene and two-dimensional superconductor NbSe2

LI Yuhao ZHU Lijun ZHANG Chi LI Lin ZENG Changgan

Citation:

Interlayer drag effect between graphene and two-dimensional superconductor NbSe2

LI Yuhao, ZHU Lijun, ZHANG Chi, LI Lin, ZENG Changgan
cstr: 32037.14.aps.74.20250361
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In an electronic double-layer system composed of two spatially adjacent but electrically insulated conductors, when current flows through one conductor (drive layer), its charge carriers transfer energy/momentum to the charge carriers in the other conductor (drag layer) through interlayer Coulomb coupling, thus generating a measurable voltage or current in the drag layer. This phenomenon is known as the interlayer drag effect. This effect provides a critical approach for studying quasiparticle interactions and investigating interlayer-correlated quantum states. Two-dimensional layered materials with highly tunable properties provide new opportunities for exploring the drag effect. In this study, we fabricate an electronic double-layer structure consisting of graphene and NbSe2 to systematically investigate the drag effect between a two-dimensional semimetal and a two-dimensional superconductor, wherein a thin hBN layer serves as the insulating spacer. When graphene acts as the drive layer and NbSe2 acts as the drag layer, a significant positive drag response is observed within the superconducting transition temperature range of NbSe2. In contrast, the drag signal vanishes when NbSe2 is in its normal metallic state. The measurements of magnetic field dependence reveal that the drag response disappears under high fields where the superconductivity of NbSe2 is suppressed, further confirming its direct correlation with the superconducting transition. The gate-voltage modulation experiments reveal that the drag response peaks when adjusting the Fermi level of graphene across the Dirac point. This is attributed to the reduced screening of interlayer interactions due to the ultra-low carrier concentration at this point. Notably, the sign of the supercurrent drag does not depend on the carrier type in graphene, ruling out the traditional momentum-transfer drag mechanism. Our results collectively demonstrate the realization of supercurrent drag effect, which has been attributed to Coulomb coupling between the quantum fluctuations of the superconducting phases in a superconductor and the charge densities in a normal conductor in previous study. Notably, by comparing different devices, it is found that this type of supercurrent drag responses occurs only in the thin NbSe2 layers cleaved in air. No significant signals are detected in thick NbSe2 layers or thin layers cleaved under the protection of argon. These results establish the importance of superconducting inhomogeneity in NbSe2 for generating supercurrent drag effect, indicating that drag measurements can also serve as a novel probe for investigating superconducting properties. Further investigation into the polarity and intensity of supercurrent drag signals may advance our understanding of inhomogeneous superconductivity, as well as interactions between normal carriers and Cooper pairs.
      Corresponding author: LI Lin, lilin@ustc.edu.cn ; ZENG Changgan, cgzeng@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92165201, 12474051), the National Key Research and Development Program of China (Grant No. 2023YFA1406300), and the Anhui Provincial Natural Science Foundation, China (Grant Nos. 2308085J11, 2308085QA14).
    [1]

    Narozhny B N, Levchenko A 2016 Rev. Mod. Phys. 88 025003Google Scholar

    [2]

    Laroche D, Gervais G, Lilly M P, Reno J L 2014 Science 343 631Google Scholar

    [3]

    Yamamoto M, Stopa M, Tokura Y, Hirayama Y, Tarucha S 2006 Science 313 204Google Scholar

    [4]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691Google Scholar

    [5]

    Tutuc E, Shayegan M, Huse D A 2004 Phys. Rev. Lett. 93 036802Google Scholar

    [6]

    Su J J, MacDonald A H 2008 Nat. Phys. 4 799Google Scholar

    [7]

    Liu X, Watanabe K, Taniguchi T, Halperin B I, Kim P 2017 Nat. Phys. 13 746Google Scholar

    [8]

    Li J I A, Taniguchi T, Watanabe K, Hone J, Dean C R 2017 Nat. Phys. 13 751Google Scholar

    [9]

    Giaever I 1966 Phys. Rev. Lett. 16 460Google Scholar

    [10]

    Duan J M, Yip S 1993 Phys. Rev. Lett. 70 3647Google Scholar

    [11]

    Shimshoni E 1995 Phys. Rev. B 51 9415Google Scholar

    [12]

    Huang X, Bazàn G, Bernstein G H 1995 Phys. Rev. Lett. 74 4051Google Scholar

    [13]

    Giordano N, Monnier J D 1994 Phys. Rev. B 50 9363Google Scholar

    [14]

    Kim S, Jo I, Nah J, Yao Z, Banerjee S K, Tutuc E 2011 Phys. Rev. B 83 161401Google Scholar

    [15]

    Gorbachev R V, Geim A K, Katsnelson M I, Novoselov K S, Tudorovskiy T, Grigorieva I V, MacDonald A H, Morozov S V, Watanabe K, Taniguchi T, Ponomarenko L A 2012 Nat. Phys. 8 896Google Scholar

    [16]

    Tao R, Li L, Xie H Y, Fan X D, Guo L H, Zhu L J, Yan Y D, Zhang Z Y, Zeng C G 2023 Nat. Phys. 19 372Google Scholar

    [17]

    Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forró L, Shan J, Mak K F 2016 Nat. Phys. 12 139Google Scholar

    [18]

    Khestanova E, Birkbeck J, Zhu M, Cao Y, Yu G L, Ghazaryan D, Yin J, Berger H, Forró L, Taniguchi T, Watanabe K, Gorbachev R V, Mishchenko A, Geim A K, Grigorieva I V 2018 Nano Lett. 18 2623Google Scholar

    [19]

    Onishi S, Ugeda M M, Zhang Y, Chen Y, Ojeda-Aristizabal C, Ryu H, Mo S K, Hussain Z, Shen Z X, Crommie M F, Zettl A 2016 Phys. Status Solidi B 253 2396Google Scholar

    [20]

    El-Bana M S, Wolverson D, Russo S, Balakrishnan G, Paul D M, Bending S J 2013 Supercond. Sci. Technol. 26 125020Google Scholar

    [21]

    Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Gorbachev R V 2015 Nano Lett. 15 4914Google Scholar

    [22]

    Myers G E, Montet G L 1971 J. Phys. Chem. Solids 32 2645Google Scholar

    [23]

    Chen Z, Swartz A G, Yoon H, Inoue H, Merz T A, Lu D, Xie Y, Yuan H, Hikita Y, Raghu S, Hwang H Y 2018 Nat. Commun. 9 4008Google Scholar

    [24]

    Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, Moler K A 2011 Nat. Phys. 7 767Google Scholar

  • 图 1  (a)石墨烯-NbSe2拖拽器件示意图; (b)石墨烯-NbSe2拖拽器件的光学显微图像, 单层石墨烯和双层NbSe2的轮廓分别用黑白虚线标示, 插图为转移前NbSe2层的光学显微图像

    Figure 1.  (a) Schematic diagram of graphene-NbSe2 drag device; (b) optical image of graphene-NbSe2 drag device, the outlines of monolayer graphene and NbSe2 flakes are marked with black and white dashed lines, respectively. Inset is the optical image of the NbSe2 layer before transfer.

    图 2  (a)拖拽测试示意图; (b)器件#1中层间拖拽电阻(Rdrag)和NbSe2层内电阻($ {{R}}_{{\text{NbSe}}_{2}} $)随温度的变化曲线

    Figure 2.  (a) Schematic of the setup for drag measurements; (b) interlayer drag resistance (Rdrag) and intralayer resistance of NbSe2 ($ {{R}}_{{\text{NbSe}}_{2}} $) as functions of temperature for Device #1.

    图 3  (a)器件#1中Rdrag和$ {{R}}_{{\text{NbSe}}_{2}} $随磁场强度的变化曲线, 测试温度为1.6 K; (b) Rdrag和(c) $ {{R}}_{{\text{NbSe}}_{2}} $随温度和磁场强度的变化

    Figure 3.  (a) Rdrag and $ {{R}}_{{\text{NbSe}}_{2}} $ as functions of magnetic field for Device #1, measured at 1.6 K; (b) Rdrag and (c) $ {{R}}_{{\text{NbSe}}_{2}} $ as functions of temperature and magnetic field.

    图 4  (a)器件#1中Rdrag和石墨烯层内电阻Rgraphene随层间栅压的变化曲线, 测试温度为1.6 K; (b) Rdrag和(c) Rgraphene随温度和层间栅压的变化

    Figure 4.  (a) Rdrag and intralayer resistance of graphene (Rgraphene) as functions of interlayer gate voltage (Vint) for Device #1, measured at 1.6 K; (b) Rdrag and (c) Rgraphene as functions of temperature and Vint.

    图 5  (a)器件#2中Rdrag和$ {{R}}_{{\text{NbSe}}_{2}} $随温度的变化曲线, 插图为该器件中所使用的NbSe2层的光学显微图像, 由薄层区域(~3层)和厚层区域(~5层)两部分构成; (b)拖拽耦合比r和$ {{R}}_{{\text{NbSe}}_{2}} $随温度的变化曲线

    Figure 5.  (a) Rdrag and $ {{R}}_{{\text{NbSe}}_{2}} $ as functions of temperature for Device #2, inset is optical image of the NbSe2 layer in this device, which is composed of a thin region I (~3 layers) and a thick region II (~5 layers); (b) passive-to-active ratio r (drag current/drive current) and $ {{R}}_{{\text{NbSe}}_{2}} $ as functions of temperature.

    Baidu
  • [1]

    Narozhny B N, Levchenko A 2016 Rev. Mod. Phys. 88 025003Google Scholar

    [2]

    Laroche D, Gervais G, Lilly M P, Reno J L 2014 Science 343 631Google Scholar

    [3]

    Yamamoto M, Stopa M, Tokura Y, Hirayama Y, Tarucha S 2006 Science 313 204Google Scholar

    [4]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691Google Scholar

    [5]

    Tutuc E, Shayegan M, Huse D A 2004 Phys. Rev. Lett. 93 036802Google Scholar

    [6]

    Su J J, MacDonald A H 2008 Nat. Phys. 4 799Google Scholar

    [7]

    Liu X, Watanabe K, Taniguchi T, Halperin B I, Kim P 2017 Nat. Phys. 13 746Google Scholar

    [8]

    Li J I A, Taniguchi T, Watanabe K, Hone J, Dean C R 2017 Nat. Phys. 13 751Google Scholar

    [9]

    Giaever I 1966 Phys. Rev. Lett. 16 460Google Scholar

    [10]

    Duan J M, Yip S 1993 Phys. Rev. Lett. 70 3647Google Scholar

    [11]

    Shimshoni E 1995 Phys. Rev. B 51 9415Google Scholar

    [12]

    Huang X, Bazàn G, Bernstein G H 1995 Phys. Rev. Lett. 74 4051Google Scholar

    [13]

    Giordano N, Monnier J D 1994 Phys. Rev. B 50 9363Google Scholar

    [14]

    Kim S, Jo I, Nah J, Yao Z, Banerjee S K, Tutuc E 2011 Phys. Rev. B 83 161401Google Scholar

    [15]

    Gorbachev R V, Geim A K, Katsnelson M I, Novoselov K S, Tudorovskiy T, Grigorieva I V, MacDonald A H, Morozov S V, Watanabe K, Taniguchi T, Ponomarenko L A 2012 Nat. Phys. 8 896Google Scholar

    [16]

    Tao R, Li L, Xie H Y, Fan X D, Guo L H, Zhu L J, Yan Y D, Zhang Z Y, Zeng C G 2023 Nat. Phys. 19 372Google Scholar

    [17]

    Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forró L, Shan J, Mak K F 2016 Nat. Phys. 12 139Google Scholar

    [18]

    Khestanova E, Birkbeck J, Zhu M, Cao Y, Yu G L, Ghazaryan D, Yin J, Berger H, Forró L, Taniguchi T, Watanabe K, Gorbachev R V, Mishchenko A, Geim A K, Grigorieva I V 2018 Nano Lett. 18 2623Google Scholar

    [19]

    Onishi S, Ugeda M M, Zhang Y, Chen Y, Ojeda-Aristizabal C, Ryu H, Mo S K, Hussain Z, Shen Z X, Crommie M F, Zettl A 2016 Phys. Status Solidi B 253 2396Google Scholar

    [20]

    El-Bana M S, Wolverson D, Russo S, Balakrishnan G, Paul D M, Bending S J 2013 Supercond. Sci. Technol. 26 125020Google Scholar

    [21]

    Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Gorbachev R V 2015 Nano Lett. 15 4914Google Scholar

    [22]

    Myers G E, Montet G L 1971 J. Phys. Chem. Solids 32 2645Google Scholar

    [23]

    Chen Z, Swartz A G, Yoon H, Inoue H, Merz T A, Lu D, Xie Y, Yuan H, Hikita Y, Raghu S, Hwang H Y 2018 Nat. Commun. 9 4008Google Scholar

    [24]

    Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, Moler K A 2011 Nat. Phys. 7 767Google Scholar

  • [1] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] Bao Chang-Hua, Fan Ben-Shu, Tang Pei-Zhe, Duan Wen-Hui, Zhou Shu-Yun. Floquet engineering in quantum materials. Acta Physica Sinica, 2023, 72(23): 234202. doi: 10.7498/aps.72.20231423
    [3] Duan Xiu-Ming, Yi Zhi-Jun. Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton. Acta Physica Sinica, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [4] Wu Ze-Fei, Huang Mei-Zhen, Wang Ning. Nonlinear Hall effects in two-dimensional moiré superlattices. Acta Physica Sinica, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [5] Chen Xiao-Juan, Xu Kang, Zhang Xiu, Liu Hai-Yun, Xiong Qi-Hua. Research progress of bulk photovoltaic effect in two-dimensional materials. Acta Physica Sinica, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [6] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [7] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [8] Wang Ya-Xun, Guo Di, Li Jian-Gao, Zhang Dong-Bo. Engineering of properties of low-dimensional materials via inhomogeneous strain. Acta Physica Sinica, 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [9] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [10] Long Hui, Hu Jian-Wei, Wu Fu-Gen, Dong Hua-Feng. Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber. Acta Physica Sinica, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [11] Wang Cong, Liu Jie, Zhang Han. Ultrafast pulse lasers based on two-dimensinal nanomaterials. Acta Physica Sinica, 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [12] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [13] Xu Yan, Fan Wei, Chen Bing, Nan Xiang-Hong, Chen Da, Zhou Qiang, Zhang Lu-Yin. Density-density correlation in quasi two-dimensional free expanding Bose-Einstein condensates. Acta Physica Sinica, 2013, 62(21): 216701. doi: 10.7498/aps.62.216701
    [14] Su Jie, Wang Ji-Suo, Liang Bao-Long, Zhang Xiao-Yan. The energy and thermal effects of mesoscopic capacitance coupling LC circuit at finite temperature. Acta Physica Sinica, 2008, 57(11): 7216-7220. doi: 10.7498/aps.57.7216
    [15] Qiu Shen-Yu, Cai Shao-Hong. Quantum effect of dissipative mesoscopic capacitance coupled circuit. Acta Physica Sinica, 2006, 55(2): 816-819. doi: 10.7498/aps.55.816
    [16] Wang ZhongChun. Quantum fluctuations of current in a mesoscopic lossless transmission line. Acta Physica Sinica, 2003, 52(5): 1230-1233. doi: 10.7498/aps.52.1230
    [17] Liang Mai-Lin, Yuan Bing. Quantum fluctuations in the damped inductive-coupled electric circuit with resistances in the component circuits. Acta Physica Sinica, 2003, 52(4): 978-983. doi: 10.7498/aps.52.978
    [18] Long Chao-Yun, Liu Bo, Wang Xin-Fu. . Acta Physica Sinica, 2002, 51(1): 159-162. doi: 10.7498/aps.51.159
    [19] WANG JI-SUO, FENG JIAN, ZHAN MING-SHENG. COULOMB BLOCKADE AND QUANTUM EFFECTS OF CHARGE IN A NON-DISSIPATIVE MESOSCOPIC INDUCTANCE-COUPLING CIRCUITS. Acta Physica Sinica, 2001, 50(2): 299-303. doi: 10.7498/aps.50.299
    [20] WANG JI-SUO, LIU TANG-KUN, ZHAN MING-SHENG. QUANTUM FLUCTUATIONS OF A MESOSCOPIC CAPACITANCE COUPLING CIRCUITS IN A DISPLACED SQUEEZED FOCK STATE. Acta Physica Sinica, 2000, 49(11): 2271-2275. doi: 10.7498/aps.49.2271
Metrics
  • Abstract views:  669
  • PDF Downloads:  54
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2025
  • Accepted Date:  15 May 2025
  • Available Online:  27 May 2025
  • Published Online:  20 July 2025
  • /

    返回文章
    返回
    Baidu
    map