搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子材料的弗洛凯调控

鲍昌华 范本澍 汤沛哲 段文晖 周树云

引用本文:
Citation:

量子材料的弗洛凯调控

鲍昌华, 范本澍, 汤沛哲, 段文晖, 周树云

Floquet engineering in quantum materials

Bao Chang-Hua, Fan Ben-Shu, Tang Pei-Zhe, Duan Wen-Hui, Zhou Shu-Yun
PDF
HTML
导出引用
  • 基于光-物质强相互作用的弗洛凯调控有望在超快时间尺度上驱动量子材料进入非平衡态, 进而调控它们的电子结构和物理特性, 实现平衡态所不具有的新奇物理效应. 近年来, 弗洛凯调控备受研究人员关注, 理论方面已有大量丰富的预言; 实验方面, 拓扑绝缘体、石墨烯、黑磷等几个代表性材料的弗洛凯调控也取得了一些重要的研究进展. 本文简略介绍该领域取得的理论和实验方面的重要进展, 并对研究前景、实验挑战及发展方向进行展望.
    Floquet engineering based on the strong light-matter interaction is expected to drive quantum materials into nonequilibrium states on an ultrafast timescale, thereby engineering their electronic structure and physical properties, and achieving novel physical effects which have no counterpart in equilibrium states. In recent years, Floquet engineering has attracted a lot of research interest, and there have been numerous rich theoretical predictions. In addition, important experimental research progress has also been made in several representative materials such as topological insulators, graphene, and black phosphorus. Herein, we briefly introduce the important theoretical and experimental progress in this field, and prospect the research future, experimental challenges, and development directions.
      通信作者: 周树云, syzhou@mail.tsinghua.edu.cn
      Corresponding author: Zhou Shu-Yun, syzhou@mail.tsinghua.edu.cn
    [1]

    Warren B E 1990 X-Ray Diffraction(Courier Corporation

    [2]

    Long D A 1977 Raman Spectroscopy (New York and London: McGraw-Hill

    [3]

    Henderson B, Imbusch G F 2006 Optical Spectroscopy of Inorganic Solids (Cambridge: Oxford University Press

    [4]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar

    [5]

    Hüfner S 2013 Photoelectron Spectroscopy: Principles and Applications (Springer Science & Business Media

    [6]

    Basov D N, Averitt R D, Hsieh D 2017 Nat. Mater. 16 1077Google Scholar

    [7]

    Bao C H, Tang P Z, Sun D, Zhou S Y 2021 Nat. Rev. Phys. 4 33Google Scholar

    [8]

    Oka T, Aoki H 2009 Phys. Rev. B 79 081406(RGoogle Scholar

    [9]

    Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108Google Scholar

    [10]

    Lindner N H, Refael G, Galitski V 2011 Nat. Phys. 7 490Google Scholar

    [11]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Philadelphia: Saunders College

    [12]

    Sambe H 1973 Phys. Rev. A 7 2203Google Scholar

    [13]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [14]

    Oka T, Kitamura S 2019 Annu. Rev. Condens. Matter Phys. 10 387Google Scholar

    [15]

    Rudner M S, Lindner N H 2020 Nat. Rev. Phys. 2 229Google Scholar

    [16]

    de la Torre A, Kennes D M, Claassen M, Gerber S, McIver J W, Sentef M A 2021 Rev. Mod. Phys. 93 041002Google Scholar

    [17]

    Eckardt A 2017 Rev. Mod. Phys. 89 011004Google Scholar

    [18]

    Cooper N R, Dalibard J, Spielman I B 2019 Rev. Mod. Phys. 91 015005Google Scholar

    [19]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006Google Scholar

    [20]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [21]

    Görg F, Messer M, Sandholzer K, Jotzu G, Desbuquois R, Esslinger T 2018 Nature 553 481Google Scholar

    [22]

    Rechtsman M C, Zeuner J M, Plotnik Y, et al. 2013 Nature 496 196Google Scholar

    [23]

    Maczewsky L J, Zeuner J M, Nolte S, Szameit A 2017 Nat. Commun. 8 13756Google Scholar

    [24]

    Mukherjee S, Spracklen A, Valiente M, Andersson E, Öhberg P, Goldman N, Thomson R R 2017 Nat. Commun. 8 13918Google Scholar

    [25]

    Ezawa M 2013 Phys. Rev. Lett. 110 026603Google Scholar

    [26]

    Claassen M, Jia C, Moritz B, Devereaux T P 2016 Nat. Commun. 7 13074Google Scholar

    [27]

    Wang R, Wang B G, Shen R, Sheng L, Xing D Y 2014 EPL 105 17004Google Scholar

    [28]

    Chan C K, Lee P A, Burch K S, Han J H, Ran Y 2016 Phys. Rev. Lett. 116 026805Google Scholar

    [29]

    Hübener H, Sentef M A, De Giovannini U, Kemper A F, Rubio A 2017 Nat. Commun. 8 13940Google Scholar

    [30]

    Yan Z B, Wang Z 2016 Phys. Rev. Lett. 117 087402Google Scholar

    [31]

    Ezawa M 2017 Phys. Rev. B 96 041205(RGoogle Scholar

    [32]

    Deng T W, Zheng B B, Zhan F Y, Fan J, Wu X Z, Wang R 2020 Phys. Rev. B 102 201105Google Scholar

    [33]

    Liu H, Sun J T, Cheng C, Liu F, Meng S 2018 Phys. Rev. Lett. 120 237403Google Scholar

    [34]

    Chan C K, Oh Y T, Han J H, Lee P A 2016 Phys. Rev. B 94 121106(RGoogle Scholar

    [35]

    Zhou L W, Gong J B 2018 Phys. Rev. B 98 205417Google Scholar

    [36]

    Wu H, An J H 2022 Phys. Rev. B 105 L121113Google Scholar

    [37]

    Topp G E, Jotzu G, McIver J W, Xian L, Rubio A, Sentef M A 2019 Phys. Rev. Res. 1 023031Google Scholar

    [38]

    Rodriguez-Vega M, Vogl M, Fiete G A 2021 Ann. Phys. 435 168434Google Scholar

    [39]

    Li Y, Fertig H A, Seradjeh B 2020 Phys. Rev. Res. 2 043275Google Scholar

    [40]

    Vogl M, Rodriguez-Vega M, Fiete G A 2020 Phys. Rev. B 101 235411Google Scholar

    [41]

    Vogl M, Rodriguez-Vega M, Fiete G A 2020 Phys. Rev. B 101 241408(RGoogle Scholar

    [42]

    Kim H, Dehghani H, Aoki H, Martin I, Hafezi M 2020 Phys. Rev. Res. 2 043004Google Scholar

    [43]

    Shin D, Hubener H, De Giovannini U, Jin H, Rubio A, Park N 2018 Nat. Commun. 9 638Google Scholar

    [44]

    Mentink J H, Balzer K, Eckstein M 2015 Nat. Commun. 6 6708Google Scholar

    [45]

    Kitamura S, Oka T, Aoki H 2017 Phys. Rev. B 96 014406Google Scholar

    [46]

    Claassen M, Jiang H C, Moritz B, Devereaux T P 2017 Nat. Commun. 8 1192Google Scholar

    [47]

    Katz O, Refael G, Lindner N H 2020 Phys. Rev. B 102 155123Google Scholar

    [48]

    Morimoto T, Kitamura S, Nagaosa N 2023 J. Phys. Soc. Jpn. 92 072001Google Scholar

    [49]

    Sie E J, McIver J W, Lee Y H, Fu L, Kong J, Gedik N 2015 Nat. Mater. 14 290Google Scholar

    [50]

    Kim J, Hong X, Jin C, Shi S F, Chang C Y, Chiu M H, Li L J, Wang F 2014 Science 346 1205Google Scholar

    [51]

    Sie E J, Lui C H, Lee Y H, Fu L, Kong J, Gedik N 2017 Science 355 1066Google Scholar

    [52]

    Shan J Y, Ye M, Chu H, Lee S, Park J G, Balents L, Hsieh D 2021 Nature 600 235Google Scholar

    [53]

    McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G, Cavalleri A 2020 Nat. Phys. 16 38Google Scholar

    [54]

    Park S, Lee W, Jang S, Choi Y B, Park J, Jung W, Watanabe K, Taniguchi T, Cho G Y, Lee G H 2022 Nature 603 421Google Scholar

    [55]

    Smallwood C L, Kaindl R A, Lanzara A 2016 EPL 115 27001Google Scholar

    [56]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [57]

    Zhang H, Pincelli T, Jozwiak C, Kondo T, Ernstorfer R, Sato T, Zhou S 2022 Nat. Rev. Methods Primers 2 1Google Scholar

    [58]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [59]

    Mahmood F, Chan C-K, Alpichshev Z, Gardner D, Lee Y, Lee P A, Gedik N 2016 Nat. Phys. 12 306Google Scholar

    [60]

    Ito S, Schüler M, Meierhofer M, et al. 2023 Nature 616 696Google Scholar

    [61]

    Zhou S H, Bao C H, Fan B S, et al. 2023 Nature 614 75Google Scholar

    [62]

    Aeschlimann S, Sato S A, Krause R, Chávez-Cervantes M, De Giovannini U, Hübener H, Forti S, Coletti C, Hanff K, Rossnagel K, Rubio A, Gierz I 2021 Nano Lett. 21 5028Google Scholar

    [63]

    Jung S W, Ryu S H, Shin W J, Sohn Y, Huh M, Koch R J, Jozwiak C, Rotenberg E, Bostwick A, Kim K S 2020 Nat. Mater. 19 277Google Scholar

    [64]

    Zhou S H, Bao C H, Fan B S, Wang F, Zhong H Y, Zhang H Y, Tang P Z, Duan W H, Zhou S Y 2023 Phys. Rev. Lett. 131 116401Google Scholar

    [65]

    Bao C H, Zhong H Y, Zhou S H, Feng R, Wang Y H, Zhou S Y 2022 Rev. Sci. Instrum. 93 013902Google Scholar

    [66]

    Bao C H, Li Q, Xu S, et al. 2022 Nano Lett. 22 1138Google Scholar

    [67]

    Sato S A, McIver J W, Nuske M, Tang P Z, Jotzu G, Schulte B, Hübener H, De Giovannini U, Mathey L, Sentef M A, Cavalleri A, Rubio A 2019 Phys. Rev. B 99 214302Google Scholar

    [68]

    Sato S A, Tang P Z, Sentef M A, Giovannini U D, Hübener H, Rubio A 2019 New J. Phys. 21 093005Google Scholar

    [69]

    Nuske M, Broers L, Schulte B, Jotzu G, Sato S A, Cavalleri A, Rubio A, McIver J W, Mathey L 2020 Phys. Rev. Res. 2 043408Google Scholar

  • 图 1  (a) 实空间周期性导致电子能带在动量空间的复制示意图; (b)时间周期性导致电子在能量维度的复制示意图; (c)弗洛凯调控示意图[7]

    Fig. 1.  (a) Spatially periodic potential and Bloch bands in the k-space; (b) time-periodic potential and Floquet bands in energy; (c) schematics for Floquet engineering[7].

    图 2  (a)弗洛凯调控诱导的拓扑相变[7]; (b)在周期光场驱动前后的转角石墨烯平带电子结构[47]; (c)交换作用强度变化随时间的演化曲线[44]; (d)弗洛凯调控调节材料磁性的示意图[48]

    Fig. 2.  (a) Floquet engineering induced topological phase transition[7]; (b) flat band of twisted graphene before and after light driving[47]; (c) the evolution of exchange strength with time[44]; (d) a schematic for manipulating magnetic properties of materials by Floquet engineering[48].

    图 3  (a)单层WS2中观测到的能谷选择的光学斯塔克效应[49]; (b) MnPS3中观测到的弗洛凯调控对于光学非线性系数的调控[52]; (c)石墨烯中观测到光诱导的反常霍尔效应[53]; (d)石墨烯-铝约瑟夫森结中在微波激发下的复制隧穿谱[54]

    Fig. 3.  (a) Observation of valley selective optical stark effect in monolayer WS2[49]; (b) manipulation of optical nonlinear coefficients in MnPS3 by Floquet engineering[52]; (c) observation of light-induced anomalous Hall effect in graphene[53]; (d) replica tunneling spectrum under the excitation of microwaves in graphene-aluminum Josephson junction[54].

    图 4  (a)拓扑绝缘体Bi2Se3的超快电子能谱, 实现弗洛凯能带调控[58,59]; (b)拓扑绝缘体Bi2Te3的亚周期分辨的超快电子能谱和弗洛凯边带的形成过程[60]; (c)半导体黑磷的超快电子能谱, 实现弗洛凯能带调控[61]

    Fig. 4.  (a) TrARPES spectra of Floquet engineering in topological insulator Bi2Se3[58,59]; (b) sub-cycle resolved TrARPES spectra of topological insulator Bi2Te3 to show the formation of Floquet sidebands[60]; (c) TrARPES spectra of Floquet engineering in a semiconductor black phosphorus[61].

    Baidu
  • [1]

    Warren B E 1990 X-Ray Diffraction(Courier Corporation

    [2]

    Long D A 1977 Raman Spectroscopy (New York and London: McGraw-Hill

    [3]

    Henderson B, Imbusch G F 2006 Optical Spectroscopy of Inorganic Solids (Cambridge: Oxford University Press

    [4]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar

    [5]

    Hüfner S 2013 Photoelectron Spectroscopy: Principles and Applications (Springer Science & Business Media

    [6]

    Basov D N, Averitt R D, Hsieh D 2017 Nat. Mater. 16 1077Google Scholar

    [7]

    Bao C H, Tang P Z, Sun D, Zhou S Y 2021 Nat. Rev. Phys. 4 33Google Scholar

    [8]

    Oka T, Aoki H 2009 Phys. Rev. B 79 081406(RGoogle Scholar

    [9]

    Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108Google Scholar

    [10]

    Lindner N H, Refael G, Galitski V 2011 Nat. Phys. 7 490Google Scholar

    [11]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (Philadelphia: Saunders College

    [12]

    Sambe H 1973 Phys. Rev. A 7 2203Google Scholar

    [13]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [14]

    Oka T, Kitamura S 2019 Annu. Rev. Condens. Matter Phys. 10 387Google Scholar

    [15]

    Rudner M S, Lindner N H 2020 Nat. Rev. Phys. 2 229Google Scholar

    [16]

    de la Torre A, Kennes D M, Claassen M, Gerber S, McIver J W, Sentef M A 2021 Rev. Mod. Phys. 93 041002Google Scholar

    [17]

    Eckardt A 2017 Rev. Mod. Phys. 89 011004Google Scholar

    [18]

    Cooper N R, Dalibard J, Spielman I B 2019 Rev. Mod. Phys. 91 015005Google Scholar

    [19]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019 Rev. Mod. Phys. 91 015006Google Scholar

    [20]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [21]

    Görg F, Messer M, Sandholzer K, Jotzu G, Desbuquois R, Esslinger T 2018 Nature 553 481Google Scholar

    [22]

    Rechtsman M C, Zeuner J M, Plotnik Y, et al. 2013 Nature 496 196Google Scholar

    [23]

    Maczewsky L J, Zeuner J M, Nolte S, Szameit A 2017 Nat. Commun. 8 13756Google Scholar

    [24]

    Mukherjee S, Spracklen A, Valiente M, Andersson E, Öhberg P, Goldman N, Thomson R R 2017 Nat. Commun. 8 13918Google Scholar

    [25]

    Ezawa M 2013 Phys. Rev. Lett. 110 026603Google Scholar

    [26]

    Claassen M, Jia C, Moritz B, Devereaux T P 2016 Nat. Commun. 7 13074Google Scholar

    [27]

    Wang R, Wang B G, Shen R, Sheng L, Xing D Y 2014 EPL 105 17004Google Scholar

    [28]

    Chan C K, Lee P A, Burch K S, Han J H, Ran Y 2016 Phys. Rev. Lett. 116 026805Google Scholar

    [29]

    Hübener H, Sentef M A, De Giovannini U, Kemper A F, Rubio A 2017 Nat. Commun. 8 13940Google Scholar

    [30]

    Yan Z B, Wang Z 2016 Phys. Rev. Lett. 117 087402Google Scholar

    [31]

    Ezawa M 2017 Phys. Rev. B 96 041205(RGoogle Scholar

    [32]

    Deng T W, Zheng B B, Zhan F Y, Fan J, Wu X Z, Wang R 2020 Phys. Rev. B 102 201105Google Scholar

    [33]

    Liu H, Sun J T, Cheng C, Liu F, Meng S 2018 Phys. Rev. Lett. 120 237403Google Scholar

    [34]

    Chan C K, Oh Y T, Han J H, Lee P A 2016 Phys. Rev. B 94 121106(RGoogle Scholar

    [35]

    Zhou L W, Gong J B 2018 Phys. Rev. B 98 205417Google Scholar

    [36]

    Wu H, An J H 2022 Phys. Rev. B 105 L121113Google Scholar

    [37]

    Topp G E, Jotzu G, McIver J W, Xian L, Rubio A, Sentef M A 2019 Phys. Rev. Res. 1 023031Google Scholar

    [38]

    Rodriguez-Vega M, Vogl M, Fiete G A 2021 Ann. Phys. 435 168434Google Scholar

    [39]

    Li Y, Fertig H A, Seradjeh B 2020 Phys. Rev. Res. 2 043275Google Scholar

    [40]

    Vogl M, Rodriguez-Vega M, Fiete G A 2020 Phys. Rev. B 101 235411Google Scholar

    [41]

    Vogl M, Rodriguez-Vega M, Fiete G A 2020 Phys. Rev. B 101 241408(RGoogle Scholar

    [42]

    Kim H, Dehghani H, Aoki H, Martin I, Hafezi M 2020 Phys. Rev. Res. 2 043004Google Scholar

    [43]

    Shin D, Hubener H, De Giovannini U, Jin H, Rubio A, Park N 2018 Nat. Commun. 9 638Google Scholar

    [44]

    Mentink J H, Balzer K, Eckstein M 2015 Nat. Commun. 6 6708Google Scholar

    [45]

    Kitamura S, Oka T, Aoki H 2017 Phys. Rev. B 96 014406Google Scholar

    [46]

    Claassen M, Jiang H C, Moritz B, Devereaux T P 2017 Nat. Commun. 8 1192Google Scholar

    [47]

    Katz O, Refael G, Lindner N H 2020 Phys. Rev. B 102 155123Google Scholar

    [48]

    Morimoto T, Kitamura S, Nagaosa N 2023 J. Phys. Soc. Jpn. 92 072001Google Scholar

    [49]

    Sie E J, McIver J W, Lee Y H, Fu L, Kong J, Gedik N 2015 Nat. Mater. 14 290Google Scholar

    [50]

    Kim J, Hong X, Jin C, Shi S F, Chang C Y, Chiu M H, Li L J, Wang F 2014 Science 346 1205Google Scholar

    [51]

    Sie E J, Lui C H, Lee Y H, Fu L, Kong J, Gedik N 2017 Science 355 1066Google Scholar

    [52]

    Shan J Y, Ye M, Chu H, Lee S, Park J G, Balents L, Hsieh D 2021 Nature 600 235Google Scholar

    [53]

    McIver J W, Schulte B, Stein F U, Matsuyama T, Jotzu G, Meier G, Cavalleri A 2020 Nat. Phys. 16 38Google Scholar

    [54]

    Park S, Lee W, Jang S, Choi Y B, Park J, Jung W, Watanabe K, Taniguchi T, Cho G Y, Lee G H 2022 Nature 603 421Google Scholar

    [55]

    Smallwood C L, Kaindl R A, Lanzara A 2016 EPL 115 27001Google Scholar

    [56]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [57]

    Zhang H, Pincelli T, Jozwiak C, Kondo T, Ernstorfer R, Sato T, Zhou S 2022 Nat. Rev. Methods Primers 2 1Google Scholar

    [58]

    Wang Y H, Steinberg H, Jarillo-Herrero P, Gedik N 2013 Science 342 453Google Scholar

    [59]

    Mahmood F, Chan C-K, Alpichshev Z, Gardner D, Lee Y, Lee P A, Gedik N 2016 Nat. Phys. 12 306Google Scholar

    [60]

    Ito S, Schüler M, Meierhofer M, et al. 2023 Nature 616 696Google Scholar

    [61]

    Zhou S H, Bao C H, Fan B S, et al. 2023 Nature 614 75Google Scholar

    [62]

    Aeschlimann S, Sato S A, Krause R, Chávez-Cervantes M, De Giovannini U, Hübener H, Forti S, Coletti C, Hanff K, Rossnagel K, Rubio A, Gierz I 2021 Nano Lett. 21 5028Google Scholar

    [63]

    Jung S W, Ryu S H, Shin W J, Sohn Y, Huh M, Koch R J, Jozwiak C, Rotenberg E, Bostwick A, Kim K S 2020 Nat. Mater. 19 277Google Scholar

    [64]

    Zhou S H, Bao C H, Fan B S, Wang F, Zhong H Y, Zhang H Y, Tang P Z, Duan W H, Zhou S Y 2023 Phys. Rev. Lett. 131 116401Google Scholar

    [65]

    Bao C H, Zhong H Y, Zhou S H, Feng R, Wang Y H, Zhou S Y 2022 Rev. Sci. Instrum. 93 013902Google Scholar

    [66]

    Bao C H, Li Q, Xu S, et al. 2022 Nano Lett. 22 1138Google Scholar

    [67]

    Sato S A, McIver J W, Nuske M, Tang P Z, Jotzu G, Schulte B, Hübener H, De Giovannini U, Mathey L, Sentef M A, Cavalleri A, Rubio A 2019 Phys. Rev. B 99 214302Google Scholar

    [68]

    Sato S A, Tang P Z, Sentef M A, Giovannini U D, Hübener H, Rubio A 2019 New J. Phys. 21 093005Google Scholar

    [69]

    Nuske M, Broers L, Schulte B, Jotzu G, Sato S A, Cavalleri A, Rubio A, McIver J W, Mathey L 2020 Phys. Rev. Res. 2 043408Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件.  , 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 刘宁, 刘肯, 朱志宏. 集成二维材料非线性光学特性研究进展.  , 2023, 72(17): 174202. doi: 10.7498/aps.72.20230729
    [3] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展.  , 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [4] 巴佳燕, 陈复洋, 段后建, 邓明勋, 王瑞强. 拓扑材料中的平面霍尔效应.  , 2023, 72(20): 207201. doi: 10.7498/aps.72.20230905
    [5] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长.  , 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [6] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展.  , 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [7] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展.  , 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [8] 邱子阳, 陈岩, 邱祥冈. 拓扑材料BaMnSb2的红外光谱学研究.  , 2022, 71(10): 107201. doi: 10.7498/aps.71.20220011
    [9] 王娅巽, 郭迪, 李建高, 张东波. 低维材料物性的非均匀应变调控.  , 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [10] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质.  , 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [11] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应.  , 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [12] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法.  , 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [13] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控.  , 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [14] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展.  , 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [15] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展.  , 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [16] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强.  , 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [17] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导.  , 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [18] 徐依全, 王聪. 基于二维材料的全光器件.  , 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [19] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用.  , 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [20] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算.  , 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
计量
  • 文章访问数:  4813
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-04
  • 修回日期:  2023-11-08
  • 上网日期:  2023-11-16
  • 刊出日期:  2023-12-05

/

返回文章
返回
Baidu
map