搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双轴向应变对单层GeSe气体传感特性的影响

卢群林 杨伟煌 熊飞兵 林海峰 庄芹芹

引用本文:
Citation:

双轴向应变对单层GeSe气体传感特性的影响

卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹

Effect of biaxial strain on the gas-sensing of monolayer GeSe

Lu Qun-Lin, Yang Wei-Huang, Xiong Fei-Bing, Lin Hai-Feng, Zhuang Qin-Qin
PDF
HTML
导出引用
  • 采用第一性原理计算方法, 通过在吸附了H2, H2O, CO, NH3, NO, NO2等气体分子的单层GeSe上施加–8%—8%的双轴向应变, 从微观角度阐明应变对吸附体系电子性质的影响及其内在机理. 计算结果表明, 对于CO, NH3和NO气体分子在–8%—8%, 以及NO2分子在–8%—6%的双轴向应变范围内, 单层GeSe具备成为气体传感器的应用潜力. 较大的压缩应变(–6%—–8%)有助于提高单层GeSe对CO和NO气体的响应速度和敏感性.
    The adsorptions of various gas molecules (H2, H2O, CO, NH3, NO, and NO2) on monolayer GeSe versus the external biaxial strain in a range of –8% to 8% are investigated by first-principles calculations. The band structures, the equilibrium heights, the adsorption energy, and the amount of charge transfer are determined. The calculated results show that monolayer GeSe changes from indirect-to-direct and semiconducting-to-metallic under a certain biaxial strain. The adsorbed gas molecules hardly change the band gap of monolayer GeSe even under a biaxial strain in the whole range from –8% to 8%. The calculated adsorption energies under different strains reveal that the external biaxial strain has no significant effect on the adsorption stability of the gas molecules on monolayer GeSe, so it seems impossible to promote the desorption of the gas molecules by applying strain. It is found that NO2 under the biaxial tensile strain of 8% tends to be bound with the monolayer GeSe by chemical bond which leads to being-difficult-to-desorb. Besides that case, the investigated gas molecules are physisorbed on the GeSe surface and have a certain probability of adsorption and desorption. The charge transfers of CO, NH3, NO and NO2 adsorbed systems under the biaxial strain from –8% to 8% change somehow but are still non-negligible, while for H2 and H2O, their charge transfers are too small to be detected by the monolayer-GeSe-based gas-sensor. Thus, due to the moderate adsorption energy and charge transfer, monolayer GeSe can be a promising candidate as a sensor for CO, NH3 and NO under the biaxial strain from –8% to 8%, and for NO2 in the range from –8% to 6%. It is worth noting that because of the appropriately lower adsorption energy and bigger charge transfer, a bigger biaxial compressive strain, ranging from –6% to –8%, can improve the response speed and sensibility to CO and NO of monolayer GeSe. Furthermore, the effect of the external biaxial strain on the adsorption stability and the charge transfer are discussed based on the two mechanisms of charge transfers, i.e. the traditional and the orbital mixing charge transfer theory. The charge transfer of NH3 is governed by mixing the molecular HOMO with the orbital of GeSe, while for CO, NO and NO2, their charge transfers are most likely determined by different mechanisms under different external strains, which results in different influences on the charge transfer. The present study would be valuable for fully excavating the gas-sensing potential of the two-dimensional GeSe, and then providing sufficient theoretical basis for designing high performance gas sensors based on two-dimensional materials.
      通信作者: 杨伟煌, yangwh@hdu.edu.cn ; 庄芹芹, 2010111008@xmut.edu.cn
    • 基金项目: 浙江省公益技术应用研究计划项目(批准号: LGG19F040003)、国家自然科学基金(批准号: 61704040)、福建省自然科学基金(批准号: 2016J01684, 2018J01568)和福建省中青年教师教育科研项目(批准号: JAT190671)资助的课题
      Corresponding author: Yang Wei-Huang, yangwh@hdu.edu.cn ; Zhuang Qin-Qin, 2010111008@xmut.edu.cn
    • Funds: Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LGG19F040003), the National Natural Science Foundation of China (Grant No. 61704040), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2016J01684, 2018J01568), and the Education and Scientific Research Project for Young and Middle Aged Teachers of Fujian Province, China (Grant No. JAT190671)
    [1]

    Korotcenkov G 2007 Mater. Sci. Eng. B 139 1Google Scholar

    [2]

    Zhang R Q, Li B, Yang J L 2015 J. Phys. Chem. C 119 2871Google Scholar

    [3]

    Rastogi P, Kumar S, Bhowmick S, Agarwal A, Chauhant Y S 2014 J. Phys. Chem. C 118 30309Google Scholar

    [4]

    Pu H H, Rhim S H, Gajdardziksa-Josifovska M, Hirschmugl C J, Weinert M, Chen J H 2014 RSC Adv. 4 47481Google Scholar

    [5]

    Zhan B B, Li C, Yang J, Jenkins G, Huang W, Dong X C 2014 Small 10 4042Google Scholar

    [6]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [7]

    Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T 2013 Nano Lett. 13 668Google Scholar

    [8]

    Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W, Tok A I, Zhang Q, Hua H 2012 Small 8 63Google Scholar

    [9]

    Yang S X, Yue Q, Cai H, Wu K D, Jiang C B, Tongay S 2016 J. Mater. Chem. C 4 248Google Scholar

    [10]

    Zhang Y H, Han L F, Xiao Y H, Jia D Z, Guo Z H, Li F 2013 Comp. Mater. Sci. 69 222Google Scholar

    [11]

    Ma L, Zhang J M, Xu K W, Ji V 2015 Appl. Surf. Sci. 343 121Google Scholar

    [12]

    Rad A S, Abedini E 2016 Appl. Surf. Sci. 360 1041Google Scholar

    [13]

    Luo H, Cao Y J, Zhou J, Feng J M, Cao J M, Guo H 2016 Chem. Phys. Lett. 643 27Google Scholar

    [14]

    Van Quang V, Van Dung N, SyTrong N, Duc Hoa N, Van Duy N, Van Hieu N 2014 Appl. Phys. Lett. 105 013107Google Scholar

    [15]

    Xia Y, Wang J, Xu J L, Li X, Xie D, Xiang L, Komarneni S 2016 ACS Appl. Mater. Interfaces 8 35454Google Scholar

    [16]

    Kim J, Oh S D, Kim J H, Shin D H, Kim S, Choi S -H 2014 Sci. Rep. 4 5384Google Scholar

    [17]

    Fattah A, Khatami S, Mayorga-Martinez C C, Medina-Sanchez M, Baptista-Pires L, Merkoci A 2014 Small 10 4193Google Scholar

    [18]

    Singh A, Uddin M, Sudarshan T, Koley G 2014 Small 10 1555Google Scholar

    [19]

    Kim H Y, Lee K, McEvoy N, Yim C, Duesberg G S 2013 Nano Lett. 13 2182Google Scholar

    [20]

    Zhou C J, Zhu H L, Wu Y P, Lin W, Yang W H, Dong L X 2017 Mater. Chem. Phys. 198 49Google Scholar

    [21]

    Niu C P, Lan T S, Wang D W, Pan J B, Chu J F, Wang C Y, Yuan H, Yang A J, Wang X H, Rong M Z 2020 Appl. Surf. Sci. 520 146257Google Scholar

    [22]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [23]

    Song X F, Zhou W H, Liu X H, Gu Y, Zhang S L 2017 Phys. B 519 90Google Scholar

    [24]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [25]

    Zhou Y, Zhao M, Chen Z W, Shi Z M, Jiang Q 2018 Phys. Chem. Chem. Phys. 20 30290Google Scholar

    [26]

    Brahma M, Kabiraj A, Saha D, Mahapatra S 2018 Sci. Rep. 8 5993Google Scholar

    [27]

    Guo S Y, Yuan L, Liu X H, Zhou W H, Song X F, Zhang S L 2017 Chem. Phys. Lett. 686 83Google Scholar

    [28]

    Liu L, Yang Q, Wang Z P, Ye H Y, Chen X P, Fan X J, Zhang G Q 2018 Appl. Surf. Sci. 433 575Google Scholar

    [29]

    Wang J, Yang G F, Xue J J, Lei J M, Chen D J, Lu H, Zhang R, Zheng Y D 2018 IEEE Electron. Device Lett. 39 599Google Scholar

    [30]

    Mao Y L, Long L B, Yuan J M, Zhong J X, Zhao H Q 2018 Chem. Phys. Lett. 706 501Google Scholar

    [31]

    Ou J Z, Ge W Y, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y C, Fu Z Q, Chrimes A F, Wiodarski W, Russo S P, Li Y X, Kalantar-zadeh K 2015 ACS Nano 9 10313Google Scholar

    [32]

    Zhou X, Hu X Z, Jin B, Yu J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Sci. 5 1800478Google Scholar

    [33]

    Hu Z Y, Ding Y C, Hu X M, Zhou W H, Yu X C, Zhang S L 2019 Nanotechnology 30 252001Google Scholar

    [34]

    Wang K, Huang D W, Yu L, Feng K, Li L T, Harada T, Ikeda S, Jiang F 2019 ACS Catal. 9 3090Google Scholar

    [35]

    Zhuang Q Q, Yang W H, Lin W, Dong L X, Zhou C J 2019 NANO 14 1950131Google Scholar

    [36]

    左博敏, 袁健美, 冯志, 毛宇亮 2019 68 113103Google Scholar

    Zuo B M, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68 113103Google Scholar

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [39]

    Rochefort A, Wuest D 2009 Langmuir 25 210Google Scholar

    [40]

    Li M M, Zhang J, Li F J, Zhu F X, Zhang M, Zhao X F 2009 Phys. Status Solidi C 6 S90Google Scholar

    [41]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [42]

    Monkhorst H J, Pack J D 1976 Phys.Rev. B 13 5188Google Scholar

    [43]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [44]

    Leenaerts O, Partoens B, Peeters F M 2008 Phys. Rev. B 77 125416Google Scholar

  • 图 1  (a) 一个4×4单层GeSe晶胞的俯视和侧视图; (b) 各气体分子在单层GeSe上稳定吸附时的结构示意图, 气体分子从左往右依次为H2, H2O, CO, NH3, NO, NO2; (c) 在单层GeSe的ab平面上施加双轴向应变示意图

    Fig. 1.  (a) Top and side views of the pristine monolayer GeSe; (b) the most favorable configurations for H2, H2O, CO, NH3, NO and NO2 adsorbed on monolayer GeSe, respectively; (c) external biaxial strain applied on monolayer GeSe.

    图 2  双轴向应变ε为0, –2%, –6%, 4%, 8%时单层GeSe的能带结构图

    Fig. 2.  Band structures of pristine monolayer GeSe at the biaxial stain of 0, –2%, –6%, 4% and 8%, respectively.

    图 3  在–8%—8%的双轴向应变范围内, 各气体吸附体系的特性与双轴向应变的关系曲线: (a) 带隙; (b) 平衡高度; (c) 吸附能; (d) 电荷转移量

    Fig. 3.  The characteristics of different gas adsorbed systems versus the biaxial strain ranging from –8% to 8%: (a) energy bandgap; (b) equilibrium height; (c) adsorption energy; (d) amount of charge transfer.

    图 4  (a) 各气体分子吸附体系的费米能级与双轴向应变的关系曲线; (b)单层GeSe在–8%—8%双轴向应变范围内的费米能级、气体分子的HOMO和LUMO以及吸附体系的费米能级

    Fig. 4.  (a) Fermi–level of different gas adsorbed systems versus the biaxial strain ranging from –8% to 8%; (b) Fermi-level of pristine monolayer GeSe under the biaxial strain from –8% to 8%, molecular HOMO and LUMO levels and Fermi-levels of the adsorbed systems.

    图 5  CO分子吸附体系在双轴向应变 (a) ε = 0和(b) ε = 8%下, NO2分子吸附体系在双轴向应变 (c) ε = 6%和(d) ε = 8%下2.0 × 10–3 e/Å3等能面的差分电荷密度分布图, 其中黄色和蓝色等能面分别表示电子的积聚和耗尽. 图中标出了电荷转移的方向和大小. 插图为单个气体分子的HOMO和LUMO

    Fig. 5.  Side views of the differential charge densities (DCD) for CO adsorbed system at (a) ε = 0 and (b) ε = 8%, NO2 adsorbed system at (a) ε = 6% and (b) ε = 8%, respectively. The isosurface is taken as 2.0 × 10–3 e/Å3. The electron accumulation (depletion) regin on the DCD isosurface is indicated by yellow (blue). The direction (indicated by an arrow) and value of the charge transfer are shown. Insets show the HOMO and LUMO of a single gas molecule.

    Baidu
  • [1]

    Korotcenkov G 2007 Mater. Sci. Eng. B 139 1Google Scholar

    [2]

    Zhang R Q, Li B, Yang J L 2015 J. Phys. Chem. C 119 2871Google Scholar

    [3]

    Rastogi P, Kumar S, Bhowmick S, Agarwal A, Chauhant Y S 2014 J. Phys. Chem. C 118 30309Google Scholar

    [4]

    Pu H H, Rhim S H, Gajdardziksa-Josifovska M, Hirschmugl C J, Weinert M, Chen J H 2014 RSC Adv. 4 47481Google Scholar

    [5]

    Zhan B B, Li C, Yang J, Jenkins G, Huang W, Dong X C 2014 Small 10 4042Google Scholar

    [6]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [7]

    Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T 2013 Nano Lett. 13 668Google Scholar

    [8]

    Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W, Tok A I, Zhang Q, Hua H 2012 Small 8 63Google Scholar

    [9]

    Yang S X, Yue Q, Cai H, Wu K D, Jiang C B, Tongay S 2016 J. Mater. Chem. C 4 248Google Scholar

    [10]

    Zhang Y H, Han L F, Xiao Y H, Jia D Z, Guo Z H, Li F 2013 Comp. Mater. Sci. 69 222Google Scholar

    [11]

    Ma L, Zhang J M, Xu K W, Ji V 2015 Appl. Surf. Sci. 343 121Google Scholar

    [12]

    Rad A S, Abedini E 2016 Appl. Surf. Sci. 360 1041Google Scholar

    [13]

    Luo H, Cao Y J, Zhou J, Feng J M, Cao J M, Guo H 2016 Chem. Phys. Lett. 643 27Google Scholar

    [14]

    Van Quang V, Van Dung N, SyTrong N, Duc Hoa N, Van Duy N, Van Hieu N 2014 Appl. Phys. Lett. 105 013107Google Scholar

    [15]

    Xia Y, Wang J, Xu J L, Li X, Xie D, Xiang L, Komarneni S 2016 ACS Appl. Mater. Interfaces 8 35454Google Scholar

    [16]

    Kim J, Oh S D, Kim J H, Shin D H, Kim S, Choi S -H 2014 Sci. Rep. 4 5384Google Scholar

    [17]

    Fattah A, Khatami S, Mayorga-Martinez C C, Medina-Sanchez M, Baptista-Pires L, Merkoci A 2014 Small 10 4193Google Scholar

    [18]

    Singh A, Uddin M, Sudarshan T, Koley G 2014 Small 10 1555Google Scholar

    [19]

    Kim H Y, Lee K, McEvoy N, Yim C, Duesberg G S 2013 Nano Lett. 13 2182Google Scholar

    [20]

    Zhou C J, Zhu H L, Wu Y P, Lin W, Yang W H, Dong L X 2017 Mater. Chem. Phys. 198 49Google Scholar

    [21]

    Niu C P, Lan T S, Wang D W, Pan J B, Chu J F, Wang C Y, Yuan H, Yang A J, Wang X H, Rong M Z 2020 Appl. Surf. Sci. 520 146257Google Scholar

    [22]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [23]

    Song X F, Zhou W H, Liu X H, Gu Y, Zhang S L 2017 Phys. B 519 90Google Scholar

    [24]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107 122107Google Scholar

    [25]

    Zhou Y, Zhao M, Chen Z W, Shi Z M, Jiang Q 2018 Phys. Chem. Chem. Phys. 20 30290Google Scholar

    [26]

    Brahma M, Kabiraj A, Saha D, Mahapatra S 2018 Sci. Rep. 8 5993Google Scholar

    [27]

    Guo S Y, Yuan L, Liu X H, Zhou W H, Song X F, Zhang S L 2017 Chem. Phys. Lett. 686 83Google Scholar

    [28]

    Liu L, Yang Q, Wang Z P, Ye H Y, Chen X P, Fan X J, Zhang G Q 2018 Appl. Surf. Sci. 433 575Google Scholar

    [29]

    Wang J, Yang G F, Xue J J, Lei J M, Chen D J, Lu H, Zhang R, Zheng Y D 2018 IEEE Electron. Device Lett. 39 599Google Scholar

    [30]

    Mao Y L, Long L B, Yuan J M, Zhong J X, Zhao H Q 2018 Chem. Phys. Lett. 706 501Google Scholar

    [31]

    Ou J Z, Ge W Y, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y C, Fu Z Q, Chrimes A F, Wiodarski W, Russo S P, Li Y X, Kalantar-zadeh K 2015 ACS Nano 9 10313Google Scholar

    [32]

    Zhou X, Hu X Z, Jin B, Yu J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Sci. 5 1800478Google Scholar

    [33]

    Hu Z Y, Ding Y C, Hu X M, Zhou W H, Yu X C, Zhang S L 2019 Nanotechnology 30 252001Google Scholar

    [34]

    Wang K, Huang D W, Yu L, Feng K, Li L T, Harada T, Ikeda S, Jiang F 2019 ACS Catal. 9 3090Google Scholar

    [35]

    Zhuang Q Q, Yang W H, Lin W, Dong L X, Zhou C J 2019 NANO 14 1950131Google Scholar

    [36]

    左博敏, 袁健美, 冯志, 毛宇亮 2019 68 113103Google Scholar

    Zuo B M, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68 113103Google Scholar

    [37]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [38]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [39]

    Rochefort A, Wuest D 2009 Langmuir 25 210Google Scholar

    [40]

    Li M M, Zhang J, Li F J, Zhu F X, Zhang M, Zhao X F 2009 Phys. Status Solidi C 6 S90Google Scholar

    [41]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [42]

    Monkhorst H J, Pack J D 1976 Phys.Rev. B 13 5188Google Scholar

    [43]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354Google Scholar

    [44]

    Leenaerts O, Partoens B, Peeters F M 2008 Phys. Rev. B 77 125416Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 朱凯, 黄灿, 曹邦杰, 潘燕飞, 樊济宇, 马春兰, 朱岩. 单层1T-CoI2中Kitaev作用的第一性原理研究.  , 2023, 72(24): 247101. doi: 10.7498/aps.72.20230909
    [3] 潘凤春, 林雪玲, 王旭明. 应变对(Ga, Mo)Sb磁学和光学性质影响的理论研究.  , 2022, 71(9): 096103. doi: 10.7498/aps.71.20212316
    [4] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究.  , 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [5] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [6] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [7] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器.  , 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [8] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究.  , 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [9] 左博敏, 袁健美, 冯志, 毛宇亮. 应力调控下二维硒化锗五种同分异构体的第一性原理研究.  , 2019, 68(11): 113103. doi: 10.7498/aps.68.20182266
    [10] 轩胜杰, 柳艳. 周期性应变调控斯格明子在纳米条带中的运动.  , 2018, 67(13): 137503. doi: 10.7498/aps.67.20180031
    [11] 裴丽, 吴良英, 王建帅, 李晶, 宁提纲. 啁啾相移光纤光栅分布式应变与应变点精确定位传感研究.  , 2017, 66(7): 070702. doi: 10.7498/aps.66.070702
    [12] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究.  , 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [13] 朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕. Mg2Si化合物在静水压下的电子输运性能研究.  , 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [14] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [15] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [16] 谢剑锋, 曹觉先. 六角氮化硼片能带结构的应变调控.  , 2013, 62(1): 017302. doi: 10.7498/aps.62.017302
    [17] 石立超, 张巍, 金杰, 黄翊东, 彭江得. 中红外空心Bragg光纤的制备及在气体传感中的应用.  , 2012, 61(5): 054214. doi: 10.7498/aps.61.054214
    [18] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [19] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算.  , 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [20] 宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜. 第一性原理研究应变Si/(111)Si1-xGex能带结构.  , 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
计量
  • 文章访问数:  6377
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-11
  • 修回日期:  2020-05-26
  • 上网日期:  2020-09-30
  • 刊出日期:  2020-10-05

/

返回文章
返回
Baidu
map