-
The electronic and thermoelectric properties of Mg2Si under hydrostatic pressures have been investigated using the first principles calculations with general potential linearized augmented plane-wave method and the semiclassical Boltzmann theory with the rigid band approach and the constant scattering time relaxation approximation. In this work, the hydrostatic pressure is simulated by applying equiaxial strain method for the cubic anti-fluorite structure of Mg2Si in space group Fm3m. The strain values ranging from -0.03 to 0.03 describe the compressive and tensile Processes under pressure. The band structure, electrical conductivity, Seebeck coefficient and power factor have been calculated and analyzed in detail.#br#From the band structure in Mg2Si one can see that the bottom of the conduction band shows significant changes under strains. Especially, when the strain is up to 0.02, there are two twofold-degeneracy states occurring at the center of the Brillouin zone. The top of the valence band shows a slight change due to the strain effect. For the unstrained structure, our calculated thermoelectric data are in accordance with other reports. Moreover, the results indicate that when the value of strain is up to 0.02, the transport properties get an optimal functioning of Mg2Si due to electron doping. At 300 K, the Seebeck coefficient improves obviously and comes up to 126%. And the power factor is up to 47% (45%) at T=300 K (700 K). Consequently, the thermoelectric properties can be improved through applying negative pressures to the Mg2Si crystal. For the case of hole doping, the transport parameters change obviously at a small strain value, and change gently at a high strain values. When the strain is up to 0.01, the Seebeck coefficient reaches the maximum value 439 μV/K-1. But, the power factor only increases 0.9%–2%. Hence, we can conclude that the hydrostatic pressures have a slight influence on the thermoelectric properties of hole-doped materials.
-
Keywords:
- Mg2Si /
- strain /
- thermoelectric properties /
- first principles
[1] Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Kondtantinov P P, Samunin A Y, Vedernikov M V 2006 Phys. Rev. B 74 045207
[2] Han X P, Shao G S 2012 J. Appl. Phys. 112 013715
[3] Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C 2012 Phys. Rev. Lett. 108 166601
[4] Hinsche N F, Yavorsky B Y, Gradhand M, Czerner M, Winkler M, KÖnig J, BÖttner H, Mertig I, Zahn P 2012 Phys. Rev. B 86 085323
[5] 2013 Scripta Mater 69 606
[6] Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 8 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 绕光辉 2012 8 086101]
[7] Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 63 057201]
[8] Xue L, Xu B, Yi L 2014 Chin. Phys. B 23 037103
[9] Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Li J B, Liu G Y 2012 Chin. Phys. B 21 106101
[10] Balout H, Boulet P, Record M C 2014 Intermetallics 50 8
[11] Blaha P, Schwarz K, Sorantin P, Trickey S B 1990 Comput. Phys. Commun. 59 399
[12] Madsen G K H, BoltzTraP S D J 2006 Comput. Phys. Commun. 175 67
[13] Anastassakis E, Hawranek J P 1972 Phys. Rev. B 5 4003
[14] Zhang J, Fan Z, WangY Q, Zhou B L 2000 Mater. Sci. Eng. A 281 104
[15] Hinsche N F, Mertig I, Zahn P 2011 J. Phys.: Condens. Matter 23 295502
[16] Koenig P, Lynch D W, Danielson G C 1961 J. Phys. Chem. Solids 20 122
[17] Ong K P, Singh D J, Wu P 2011 Phys. Rev. B 83 115110
[18] Boulet P, Record M C 2011 J. Chem. Phys. 135 234702
[19] Akasaka M, Iida T, Matsumoto A, Yamanaka K, Takanashi Y, Imai T, Hamada N 2008 J. Appl. Phys. 104 013703
[20] Tani J I, Kido H 2007 Intermetallics 15 1202
-
[1] Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Kondtantinov P P, Samunin A Y, Vedernikov M V 2006 Phys. Rev. B 74 045207
[2] Han X P, Shao G S 2012 J. Appl. Phys. 112 013715
[3] Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J, Uher C 2012 Phys. Rev. Lett. 108 166601
[4] Hinsche N F, Yavorsky B Y, Gradhand M, Czerner M, Winkler M, KÖnig J, BÖttner H, Mertig I, Zahn P 2012 Phys. Rev. B 86 085323
[5] 2013 Scripta Mater 69 606
[6] Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Rao G H 2012 Acta Phys. Sin. 8 086101 (in Chinese) [张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 绕光辉 2012 8 086101]
[7] Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 057201 (in Chinese) [孙政, 陈少平, 杨江锋, 孟庆森, 崔教林 2014 63 057201]
[8] Xue L, Xu B, Yi L 2014 Chin. Phys. B 23 037103
[9] Zhang H, Luo J, Zhu H T, Liu Q L, Liang J K, Li J B, Liu G Y 2012 Chin. Phys. B 21 106101
[10] Balout H, Boulet P, Record M C 2014 Intermetallics 50 8
[11] Blaha P, Schwarz K, Sorantin P, Trickey S B 1990 Comput. Phys. Commun. 59 399
[12] Madsen G K H, BoltzTraP S D J 2006 Comput. Phys. Commun. 175 67
[13] Anastassakis E, Hawranek J P 1972 Phys. Rev. B 5 4003
[14] Zhang J, Fan Z, WangY Q, Zhou B L 2000 Mater. Sci. Eng. A 281 104
[15] Hinsche N F, Mertig I, Zahn P 2011 J. Phys.: Condens. Matter 23 295502
[16] Koenig P, Lynch D W, Danielson G C 1961 J. Phys. Chem. Solids 20 122
[17] Ong K P, Singh D J, Wu P 2011 Phys. Rev. B 83 115110
[18] Boulet P, Record M C 2011 J. Chem. Phys. 135 234702
[19] Akasaka M, Iida T, Matsumoto A, Yamanaka K, Takanashi Y, Imai T, Hamada N 2008 J. Appl. Phys. 104 013703
[20] Tani J I, Kido H 2007 Intermetallics 15 1202
Catalog
Metrics
- Abstract views: 5748
- PDF Downloads: 353
- Cited By: 0