Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement and analysis of time accuracy in single-shot measurement of ac conductivity of warm dense matter

XIAO Fan WANG Xiaowei WANG Li WANG Jiacan SUN Xu ZHENG Zhigang FAN Xiaohui ZHANG Dongwen ZHAO Zengxiu

Citation:

Improvement and analysis of time accuracy in single-shot measurement of ac conductivity of warm dense matter

XIAO Fan, WANG Xiaowei, WANG Li, WANG Jiacan, SUN Xu, ZHENG Zhigang, FAN Xiaohui, ZHANG Dongwen, ZHAO Zengxiu
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The spatial chirp based single-shot pump-probe technique represents a pivotal technology for studying electron non-equilibrium dynamics in warm dense matter created with intense laser pulses. Notably, its time resolution can reach tens of femtoseconds. In this work, we introduce the single-shot measurement technique of ac conductivity of warm dense matter, as well as a detailed account of the experimental setup. In addition, the main factors limiting the time resolution of the system are discussed in depth. We show the system can achieve a resolution of 13.8 femtoseconds. Nevertheless, during practical application, several aspects, namely the calibration of the zero-delay, the depth of field of the imaging system, and the low-pass filtering effect inherent in the imaging system, will exert a substantial influence on the time-resolution. This research has important reference for enhancing the time accuracy of single-shot measurement of ac conductivity of warm dense matter. Moreover, it serves as a potent tool for the in-depth study of the ultrafast dynamic processes of materials under strong-field conditions.
  • 图 1  WDM交流电导率时间演化的单发测量原理 (a) 实验系统示意图, 其中CM1和CM2为两个柱面镜, RCam和Tcam分别为反射光成像相机和透射光成像相机; (b) 空间啁啾把不同延时映射在不同空间位置上的原理

    Figure 1.  Single-shot measurement principle for time-dependent AC conductivity evolution in WDM: (a) Schematic of the experimental system, where CM1 and CM2 are two cylindrical mirrors, and RCam and Tcam are the reflection light imaging camera and transmission light imaging camera, respectively; (b) principle of spatial chirp which maps different time delays to different spatial positions.

    图 2  成像分辨率与延时标定 (a) USAF 1951分辨率板的像, 成像系统在水平方向能分辨至第7组第1个元素 (128 lp/mm); (b) 在偏振选通法(PG)中测得的透射光光强变化($ \Delta I $)随空间的分布; (c) 利用PG标定延时, 图中9条曲线代表9个间隔为33.3 fs的不同延时点测得的$ \Delta I $的空间分布

    Figure 2.  Imaging resolution and time delay calibration: (a) Image of the USAF 1951 resolution target, where the imaging system resolves down to the Group 7 Element 1 (128 lp/mm) in the horizontal direction; (b) spatial distribution of transmitted light intensity variation (∆I) measured via the polarization gating (PG) method; (c) time delay calibration using PG, where the 9 curves represents 9 different measurements of ∆I vs. space with delay increment of 33.3 fs.

    图 3  石英片厚度对延时零点标定精度的影响, 即探测光和泵浦光在融石片不同厚度的地方具有不同的延时

    Figure 3.  Effect of quartz plate thickness on the accuracy of the delay zero point. Probe light and pump light experience different delays at different thicknesses of the quartz plate.

    图 4  样品平面与标定平面不重合时带来的延时误差, 其中O点是利用偏振门方案标定的延时零点, A点是透射相机“认为”的样品上的延时零点, B点是反射相机“认为”的样品上的延时零点

    Figure 4.  Delay error introduced when sample plane and calibration plane do not coincide. Point O is the delay zero point calibrated using the polarization gate method, Point A is the delay zero point on the sample perceived by the transmission camera, Point B is the delay zero point on the sample perceived by the reflection camera.

    图 5  突变结构的成像模拟 (a)一个瞬时突变结构(real)经过成像系统后的像(imaged)带有衍射振荡结构; (b) 5—20 fs缓变结构的像

    Figure 5.  Imaging simulation of abrupt structures: (a) An instantaneous abrupt structure (real) after passing through the imaging system, the image (imaged) exhibits a diffractive oscillatory structure; (b) images of 5, 10, 12, 15 and 20 fs gradually varying structures.

    表 1  单发测量温稠密交流电导率演化的误差分析

    Table 1.  Error analysis of conductivity evolution in single-shot measurements of warm dense matter.

    系统物理量 误差来源 依赖关系 典型值
    系统时间分辨率$ \Delta \tau $泵浦光脉宽$ {\tau }_{1} $$ \Delta \tau =\sqrt{{\tau }_{1}^{2}+{\tau }_{2}^{2}+{\left(\chi {{\Delta }}x\right)}^{2}} $$ {\tau }_{1}=9.7{\mathrm{f}}{\mathrm{s}}; {\tau }_{2}=5{\mathrm{f}}{\mathrm{s}} $
    $ \chi =2.1{\mathrm{ }}{\mathrm{f}}{\mathrm{s}}/\text{μm} $,
    $ \Delta x=4\text{μm} $
    $ \Delta \tau =13.8{\mathrm{f}}{\mathrm{s}} $
    探测光脉宽$ {\tau }_{2} $
    成像系统分辨率$ \Delta x $
    延时零点标定误差$ \Delta {\tau }_{0} $融石英片厚度$ L $$ \Delta {\tau }_{0}\left[{\mathrm{f}}{\mathrm{s}}\right]\approx 0.42 L\left[\text{μm}\right] $$ L=30\text{ μm} $
    $ \Delta {\tau }_{0}=12.7\;{\mathrm{f}}{\mathrm{s}} $
    透射延时零点定位误差$ \Delta {\tau }_{0 T} $成像定位精度$ d $$ {\Delta \tau }_{0 T}\left[{\mathrm{f}}{\mathrm{s}}\right]\approx -0.72 d\left[\text{μm}\right] $,$ d=35\text{ μm} $
    $ \Delta {\tau }_{0 T}=25.2{\mathrm{f}}{\mathrm{s}} $
    反射延时零点定位误差$ \Delta {\tau }_{0 R} $$ {\Delta \tau }_{0 R}\left[{\mathrm{f}}{\mathrm{s}}\right]\approx 0.038 d\left[\text{μm}\right] $$ d=35\text{ μm} $
    $ \Delta {\tau }_{0 T}=1.33{\mathrm{f}}{\mathrm{s}} $
    动力学突变的时间分辨率$ \Delta {\tau }_{{\mathrm{f}}} $成像系统数值孔径$ {\mathrm{N}}{\mathrm{A}} $$ \Delta {\tau }_{{\mathrm{f}}}\propto \dfrac{1}{{\mathrm{N}}{\mathrm{A}}} $$ {\mathrm{N}}{\mathrm{A}}=0.1 $
    $ \Delta {\tau }_{{\mathrm{f}}} > 20{\mathrm{f}}{\mathrm{s}} $
    DownLoad: CSV
    Baidu
  • [1]

    陈其峰, 顾云军, 郑君, 李江涛, 李治国, 权伟龙, 付志坚, 李成军 2017 科学通报 62 812Google Scholar

    Chen Q F, Gu Y J, Zheng J, Li J T, Li Z G, Quan W L, Fu Z J, Li C J 2017 Chin. Sci. Bull. 62 812Google Scholar

    [2]

    Kang D, Dai J 2018 J. Phys. Condens. Matter 30 073002Google Scholar

    [3]

    Ichimaru S 1982 Rev. Mod. Phys. 54 1017Google Scholar

    [4]

    Koenig M, Benuzzi-Mounaix A, Ravasio A, Vinci T, Ozaki N, Lepape S, Batani D, Huser G, Hall T, Hicks D, MacKinnon A, Patel P, Park H S, Boehly T, Borghesi M, Kar S, Romagnani L 2005 Plasma Phys. Control. Fusion 47 B441Google Scholar

    [5]

    Falk K 2018 High Power Laser Sci. Eng. 6 e59Google Scholar

    [6]

    康冬冬, 曾启昱, 张珅, 王小伟, 戴佳钰 2020 强激光与粒子束 32 092006Google Scholar

    Kang D D, Zeng Q Y, Zhang S, Wang X W, Dai J Y 2020 High Power Laser Part. Beams 32 092006Google Scholar

    [7]

    Lee R W, Moon S J, Chung H K, Rozmus W, Baldis H A, Gregori G, Cauble R C, Landen O L, Wark J S, Ng A, Rose S J, Lewis C L, Riley D, Gauthier J C, Audebert P 2003 J. Opt. Soc. Am. B 20 770Google Scholar

    [8]

    Wu D, Yu W, Sheng Z M, Fritzsche S, He X T 2020 Phys. Rev. E 101 051202Google Scholar

    [9]

    Fletcher L B, Lee H J, Döppner T, Galtier E, Nagler B, Heimann P, Fortmann C, LePape S, Ma T, Millot M, Pak A, Turnbull D, Chapman D A, Gericke D O, Vorberger J, White T, Gregori G, Wei M, Barbrel B, Falcone R W, Kao C C, Nuhn H, Welch J, Zastrau U, Neumayer P, Hastings J B, Glenzer S H 2015 Nat. Photonics 9 274Google Scholar

    [10]

    Graziani F, Moldabekov Z, Olson B, Bonitz M 2022 Contrib. Plasma Phys. 62 e202100170Google Scholar

    [11]

    Dornheim T, Böhme M, Kraus D, Döppner T, Preston T R, Moldabekov Z A, Vorberger J 2022 Nat. Commun. 13 7911Google Scholar

    [12]

    Mercadier L, Benediktovitch A, Krušič Š, Kas J J, Schlappa J, Agåker M, Carley R, Fazio G, Gerasimova N, Kim Y Y, Le Guyader L, Mercurio G, Parchenko S, Rehr J J, Rubensson J E, Serkez S, Stransky M, Teichmann M, Yin Z, Žitnik M, Scherz A, Ziaja B, Rohringer N 2024 Nat. Phys. 20 1564Google Scholar

    [13]

    Forsman A, Ng A, Chiu G, More R M 1998 Phys. Rev. E 58 R1248Google Scholar

    [14]

    Ping Y, Correa A A, Ogitsu T, Draeger E, Schwegler E, Ao T, Widmann K, Price D F, Lee E, Tam H, Springer P T, Hanson D, Koslow I, Prendergast D, Collins G, Ng A 2010 High Energy Density Phys. 6 246Google Scholar

    [15]

    Ofori-Okai B K, Descamps A, McBride E E, Mo M Z, Weinmann A, Seipp L E, Ali S J, Chen Z, Fletcher L B, Glenzer S H 2024 Phys. Plasmas 31 042711Google Scholar

    [16]

    Ng A, Sterne P, Hansen S, Recoules V, Chen Z, Tsui Y Y, Wilson B 2016 Phys. Rev. E 94 03321Google Scholar

    [17]

    孙旭, 吴海忠, 王小伟, 吕治辉, 张栋文, 刘东晓, 范伟, 粟敬钦, 周维民, 谷渝秋, 赵增秀, 袁建民 2023 中国激光 50 1714013Google Scholar

    Sun X, Wu H Z, Wang X W, Lü Z H, Zhang D W, Liu D X, Fan W, Su J Q, Zhou W M, Gu Y Q, Zhao Z X, Yuan J M 2023 Chin. J. Lasers 50 1714013Google Scholar

    [18]

    Ofori-Okai B K, Descamps A, Lu J, Seipp L E, Weinmann A, Glenzer S H, Chen Z 2018 Rev. Sci. Instrum. 89 10D109Google Scholar

    [19]

    Ao T, Ping Y, Widmann K, Price D F, Lee E, Tam H, Springer P T, Ng A 2006 Phys. Rev. Lett. 96 055001Google Scholar

    [20]

    Widmann K, Ao T, Foord M E, Price D F, Ellis A D, Springer P T, Ng A 2004 Phys. Rev. Lett. 92 125002Google Scholar

    [21]

    Ping Y, Hanson D, Koslow I, Ogitsu T, Prendergast D, Schwegler E, Collins G, Ng A 2006 Phys. Rev. Lett. 96 255003Google Scholar

    [22]

    Chen Z, Holst B, Kirkwood S E, Sametoglu V, Reid M, Tsui Y Y, Recoules V, Ng A 2013 Phys. Rev. Lett. 110 135001Google Scholar

    [23]

    Chen Z, Sametoglu V, Tsui Y Y, Ao T, Ng A 2012 Phys. Rev. Lett. 108 165001Google Scholar

    [24]

    Dhar L, Fourkas J T, Nelson K A 1994 Opt. Lett. 19 643Google Scholar

    [25]

    Lindenberg A M, Larsson J, Sokolowski-Tinten K, Gaffney K J, Blome C, Synnergren O, Sheppard J, Caleman C, MacPhee A G, Weinstein D, Lowney D P, Allison T K, Matthews T, Falcone R W, Cavalieri A L, Fritz D M, Lee S H, Bucksbaum P H, Reis D A, Rudati J, Fuoss P H, Kao C C, Siddons D P, Pahl R, Als-Nielsen J, Duesterer S, Ischebeck R, Schlarb H, Schulte-Schrepping H, Tschentscher Th, Schneider J, Von Der Linde D, Hignette O, Sette F, Chapman H N, Lee R W, Hansen T N, Techert S, Wark J S, Bergh M, Huldt G, Van Der Spoel D, Timneanu N, Hajdu J, Akre R A, Bong E, Krejcik P, Arthur J, Brennan S, Luening K, Hastings J B 2005 Science 308 392Google Scholar

    [26]

    Chen Z, Hering P, Brown S B, Curry C, Tsui Y Y, Glenzer S H 2016 Rev. Sci. Instrum. 87 11E548Google Scholar

    [27]

    Liu Y Y, Zhao K, He P, Huang H D, Teng H, Wei Z Y 2017 Chin. Phys. Lett. 34 074204Google Scholar

    [28]

    Wang Y, Wang S, Rockwood A, Luther B M, Hollinger R, Curtis A, Calvi C, Menoni C S, Rocca J J 2017 Opt. Lett. 42 3828Google Scholar

    [29]

    Xiao F, Fan X H, Wang L, Zhang D W, Wu J H, Wang X W, Zhao Z X 2020 Chin. Phys. Lett. 37 114202Google Scholar

    [30]

    Chang H T, Zürch M, Kraus P M, Borja L J, Neumark D M, Leone S R 2016 Opt. Lett. 41 5365Google Scholar

    [31]

    Wang X W, Wang L, Xiao F, Zhang D W, Lue Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [32]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press

    [33]

    Shillaber C P 1945 Photomicrography: In Theory and Practice (New York: Wiley

  • [1] Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min. Experimental method for warm dense matter ionization distribution based on X-ray fluorescence pectroscopy. Acta Physica Sinica, doi: 10.7498/aps.73.20231216
    [2] Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lv Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zan Xia-Yu, Yang Jia-Min. Study of experimental method for warm dense matter ionization distribution based on x-ray fluorescence spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.72.20231216
    [3] Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Ma Jian-Yi, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min. Density effect on electronic structure of warm dense matter based on X-ray fluorescence spectroscopy. Acta Physica Sinica, doi: 10.7498/aps.72.20231215
    [4] Li Gang, Guo Yi, Zeng Xiao-Ming, Xie Na, Shao Zhong-Xi, Huang Zheng, Sun Li, Jiang Dong-Bin, Lu Feng, Zhu Bin, Zhou Kai-Nan, Su Jing-Qin. Investigation of active pump-signal synchronization technique for a ps-pulse pumped OPCPA. Acta Physica Sinica, doi: 10.7498/aps.71.20211961
    [5] Jin Yang, Zhang Ping, Li Yong-Jun, Hou Yong, Zeng Jiao-Long, Yuan Jian-Min. Influence of different charge-state ion distribution on elastic X-ray scattering in warm dense matter. Acta Physica Sinica, doi: 10.7498/aps.70.20201483
    [6] Wang Tian-Hao, Wang Kun, Zhang Yue, Jiang Lin-Cun. Investigation on equation of state and ionization equilibrium for aluminum in warm dense matter regime. Acta Physica Sinica, doi: 10.7498/aps.69.20191826
    [7] Ma Gui-Cun, Zhang Qi-Li, Song Hong-Zhou, Li Qiong, Zhu Xi-Rui, Meng Xu-Jun. Theoretical study of the equation of state for warm dense matter. Acta Physica Sinica, doi: 10.7498/aps.66.036401
    [8] Fu Zhi-Jian, Jia Li-Jun, Xia Ji-Hong, Tang Ke, Li Zhao-Hong, Quan Wei-Long, Chen Qi-Feng. A simple and effective simulation for electrical conductivity of warm dense titanium. Acta Physica Sinica, doi: 10.7498/aps.65.065201
    [9] Wang Yue, Zhang Feng-Xia, Wang Chun-Jie, Gao Chun-Xiao. DC and AC electrical properties of ZnSe under high pressure. Acta Physica Sinica, doi: 10.7498/aps.63.216401
    [10] Li Qian-Qian, Chen Xiao-Gang, Bao Shu-Hong, Guo Jun-Ming, Zhai Li-Li. Effective response to external DC and AC electric field in nonlinear cylindrical coated composite. Acta Physica Sinica, doi: 10.7498/aps.62.057201
    [11] Li Yin-Feng, Feng Su-Qin, Wang Jian-Yong. Influence of AC current on the profile of GMI effect in Fe-based nanocrystalline wire. Acta Physica Sinica, doi: 10.7498/aps.60.037306
    [12] Jiang Hong-Yuan, Li Shan-Shan, Hou Zhen-Xiu, Ren Yu-Kun, Sun Yong-Jun. Effect of asymmetrical micro electrode surface topography on alternating current electroosmosis flow rate. Acta Physica Sinica, doi: 10.7498/aps.60.020702
    [13] Wang Zhen-Dong, Liang Bian, Liu Zhong-Bo, Fan Xi-Jun. Propagation of femtosecond chirped Gaussian pulse in dense three-level Λ-type atomic medium. Acta Physica Sinica, doi: 10.7498/aps.59.7041
    [14] Ma Jing, Zhang Ruo-Bing, Zhao Hua-Jun, Zhang Wei-Li, Wang Qing-Yue. Spatial chirp and angular dispersion of the nonlinear crystal for a femtosecond optical parametric oscillation. Acta Physica Sinica, doi: 10.7498/aps.53.2184
    [15] Yang Zhen-Jun, Hu Wei, Fu Xi-Quan, Lu Da-Quan, Zheng Yi-Zhou. The production and elimination of the spatial singularity for ultrashort chirp ed pulse-beam propagation in free space. Acta Physica Sinica, doi: 10.7498/aps.52.1920
    [16] GU YU-PENG, GONG YE, SUN JI-ZHONG. INTERACTION BETWEEN PARTICLE AND TEMPERATURE FIELDS OF AC PLASMA ARC. Acta Physica Sinica, doi: 10.7498/aps.48.1078
    [17] GU GUO-QING, TAO RUI-BAO. A METHOD FOR CALCULATING DC CONDUCTIVITIES OF THE POROUS MEDIUM AND COMPOSITE (Ⅰ)——AN APPROACH TO THE POROUS MEDIUM WITH PERIODIC STRUTURE. Acta Physica Sinica, doi: 10.7498/aps.37.439
    [18] GU GUO QING, TAO RUI-BAO. A METHOD FOR CALCULATING D. C. CONDUCTIVITIES OF THE POROUS MEDIUM AND COMPOSITE (Ⅱ)——AN APPROACH TO THE ISOTROPIC AND ANISOTROPIC COMPOSITE. Acta Physica Sinica, doi: 10.7498/aps.37.582
    [19] JIANG QI, GONG CHANG-DE. CONDUCTIVITY IN THE DISORDERED LAYER SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.37.941
    [20] QIAN REN-YUAN, JIN XIANG-FENG, ZHOU SHU-QIN. A.C.CONDUCTANCE OF ORGANIC SOLID THIN FILMS. Acta Physica Sinica, doi: 10.7498/aps.29.992
Metrics
  • Abstract views:  275
  • PDF Downloads:  26
  • Cited By: 0
Publishing process
  • Received Date:  01 February 2025
  • Accepted Date:  01 March 2025
  • Available Online:  07 March 2025

/

返回文章
返回
Baidu
map