搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究

李纲 郭仪 曾小明 谢娜 邵忠喜 黄征 孙立 蒋东镔 卢峰 朱斌 周凯南 粟敬钦

引用本文:
Citation:

皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究

李纲, 郭仪, 曾小明, 谢娜, 邵忠喜, 黄征, 孙立, 蒋东镔, 卢峰, 朱斌, 周凯南, 粟敬钦

Investigation of active pump-signal synchronization technique for a ps-pulse pumped OPCPA

Li Gang, Guo Yi, Zeng Xiao-Ming, Xie Na, Shao Zhong-Xi, Huang Zheng, Sun Li, Jiang Dong-Bin, Lu Feng, Zhu Bin, Zhou Kai-Nan, Su Jing-Qin
PDF
HTML
导出引用
  • 在皮秒短脉冲泵浦的光参量啁啾脉冲放大(ps-OPCPA)系统中, 泵浦光与信号光之间的高精度时间同步是需要解决的关键问题之一. 本文基于中国工程物理研究院激光聚变研究中心的全OPCPA激光装置, 对用于前端ps-OPCPA中泵浦光与信号光的高精度同步主动控制技术进行了详细研究. 采用大啁啾信号光窄光谱光参量放大的主动反馈方式, 通过合理设计反馈光路信号光的时域展宽啁啾系数, 将泵浦光与信号光的同步时间抖动从ps量级降低至百fs量级的时间范围, 从而极大地改善了前端ps-OPCPA的能量和光谱不稳定性: 7 min测试时间内泵浦光与信号光相对同步时间抖动的均方根值(RMS)从458 fs改善至93 fs, 输出能量RMS不稳定性从30.3%改善至3.15%, 且维持光谱宽度大于100 nm的稳定宽光谱输出.
    High-precision synchronization between pump and signal is one of the key issues that should be solved in picosecond short pulse pumped optical parametric chirped pulse amplification (ps-OPCPA). Based on the all-OPCPA laser facility in Research Center of Laser Fusion, China Academy of Engineering Physics, the high-precision active pump-signal synchronization technique used in its ps-OPCPA frontend is studied in detail in this paper. The synchronization is actively controlled by an amplified narrowband spectrum from the short ps-pulse pumped optical parametric amplification of a large chirped signal. By reasonably designing the time-domain broadening chirped coefficient of the signal in the feedback optical path, relative timing jitter between pump and signal of the ps-OPCPA frontend decreases from ps to one hundred fs, which greatly improves its energy and spectral stability. The root mean square (RMS) value of the relative timing jitter decreases from 458 to 93 fs, which improves the RMS instability of the output energy from 30.3% to 3.15%, and a stable wide spectrum with width greater than 100 nm is obtained in 7-min measurement.
      通信作者: 周凯南, zhoukainan@caep.cn ; 粟敬钦, sujingqin@caep.cn
    • 基金项目: 中国工程物理研究院国防科技等离子体物理重点实验室研究基金(批准号: ZY2020-07)、中国工程物理研究院创新发展基金(批准号: CX20200022)和国家自然科学基金委员会-中国工程物理研究院NSAF联合基金(批准号: U1930126)资助的课题
      Corresponding author: Zhou Kai-Nan, zhoukainan@caep.cn ; Su Jing-Qin, sujingqin@caep.cn
    • Funds: Project supported by the Research Foundation of Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics (CAEP) (Grant No. ZY2020-07), the Innovation and Development Foundation of China Academy of Engineering Physics (Grant No. CX20200022), and the Joint Funds of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) (Grant No. U1930126)
    [1]

    Papadopoulos D N, Pamirez P, Genevrier K, Ranc L, Lebas N, Pellegrina A, Le Blanc C, Monot P, Martin L, Zou J P, Mathieu F, Audebert P, Georges P, Druon F 2017 Opt. Lett. 42 3530Google Scholar

    [2]

    Lureau F, Matras G, Chalus O, Derycke C, Morbieu T, Radier C, Casagrande O, Laux S, Ricaud S, Rey G, Pellegrina A, Richard C, Boudjemaa L, Simon-Boisson C, Baleanu A, Banici R, Gradinariu A, Caldararu C, De Boisdeffre B, Ghenuche P, Naziru A, Kolliopoulos G, Neagu L, Dabu R, Dancus I, Ursescu D 2020 High Power laser Sci. Eng. 8 e43Google Scholar

    [3]

    Archipovaite G, Galletti M, Oliveira P, Galimberti M, Frackiewicz A, Musgrave I, Hernandez-Gomez C 2020 Opt. Commun. 474 126072Google Scholar

    [4]

    Bromage J, Bahk S-W, Begishev I A, Dorrer C, Guardalben M J, Hoffman B N, Oliver J B, Roides R G, Schiesser E M, Shoup III M J, Spilatro M, Webb B, Weiner D, Zuegel J D 2019 High Power laser Sci. Eng. 7 e43Google Scholar

    [5]

    Zeng X M, Zhou K N, Zuo Y L, Zhu Q H, Su J Q, Wang X, Wang X D, Huang X J, Jiang X J, Jiang D B, Guo Y, Xie N, Zhou S, Wu Z H, Mu J, Peng H, Jin F 2017 Opt. Lett. 42 2014Google Scholar

    [6]

    Xiao Q, Pan X, Jiang Y E, Wang J F, Du L F, Guo J T, Huang D J, Lu X H, Cui Z J, Yang S S, Wei H, Wang X C, Xiao Z L, Li G Y, Wang X Q, Yang X P O, Fan W, Li X C, Zhu J Q 2021 Opt. Express 29 15980Google Scholar

    [7]

    Ishii N, Teisset C Y, Fuji T, Köhler S, Schmid K, Veisz L, Baltuska A, Krausz F 2006 IEEE J. Quantum Electron. 12 173Google Scholar

    [8]

    Teisset C Y, Ishii N, Fuji T, Metzger T, Köhler S, Holzwarth R, Baltuška A, Zheltikov A M, Krausz F 2005 Opt. Express 13 6550Google Scholar

    [9]

    Wandt C, Klingebiel S, Keppler S, Hornung M, Loeser M, Siebold M, Skrobol C, Kessel A, Trushin S A, Major Z, Hein J, Kaluza M C, Krausz F, Karsch S 2014 Laser Photonics Rev. 8 875Google Scholar

    [10]

    Riedel R, Schulz M, Prandolini M J, Hage A, Höppner H, Gottschall T, J. Limpert, Drescher M, Tavella F 2013 Opt. Express 21 28987Google Scholar

    [11]

    Wagner F, João C P, Fils J, Gottschall T, Hein J, Körner J, Limpert J, Roth M, Stöhlker T, Bagnoud V 2014 Appl. Phys. B. 116 429Google Scholar

    [12]

    杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪 2018 67 094206Google Scholar

    Yang C, Gu C L, Liu Y, Wang C, Li J, Li W X 2018 Acta Phys. Sin. 67 094206Google Scholar

    [13]

    Schwarz A, Ueffing M, Deng Y P, Gu X, Fattahi H, Metzger T, Ossiander M, Krausz F, Kienberger R 2012 Opt. Express 20 5557Google Scholar

    [14]

    Prinz S, Häfner M, Schultze M, Teisset C Y, Bessing R, Michel K, Kienberger R, T Metzger 2014 Opt. Express 22 31050Google Scholar

    [15]

    Batysta F, Antipenkov R, Green J T, Naylon J A, Novák J, Mazanec T, Hříbek P, Zervos C, Bakule P, Rus B 2014 Opt. Express 22 30281Google Scholar

    [16]

    Bromage J, Rothhardt J, Hädrich S, Dorrer C, Jocher C, Demmler S, Limpert J, Tünnermann A, Zuegel J D 2011 Opt. Express 19 16797Google Scholar

    [17]

    李纲, 刘红杰, 卢峰, 温贤伦, 何颖玲, 张发强, 戴增海 2015 64 020602Google Scholar

    Li G, Liu H J, Lu F, Wen X L, He Y L, Zhang F Q, Dai Z H 2015 Acta Phys. Sin. 64 020602Google Scholar

    [18]

    Witte S, Zinkstok R T, Hogervorst W, Eikema K S E 2007 Appl. Phys. B 87 677Google Scholar

    [19]

    Andrianov A, Szabo A, Sergeev A, Kim A, Chvykov V, Kalashnikov M 2016 Opt. Express 24 25974Google Scholar

    [20]

    Klingebiel S 2013 Ph. D. Dissertation (München: Ludwig-Maximilians-Universität München)

    [21]

    Ross I N, Matousek P, New G H C, Osvay K 2002 J. Opt. Soc. Am. B: 19 2945Google Scholar

    [22]

    Trebino R 2002 Frequency-Resolved Optical Gating: The measurement of Ultrashort Laser Pulses (Boston: Kluwer Academic Publishers)

    [23]

    Galletti M, Oliveira P, Galimberti M, Ahmad M, Archipovaite G, Booth N, Dilworth E, Frackiewicz A, Winstone T, Musgrave I, Hernandez-Gomez C 2020 High Power Laser Sci. Eng. 8 e31Google Scholar

  • 图 1  前端 ps-OPCPA系统中泵浦光与信号光高精度同步主动控制原理图. 图中: BS, 分束片; PC, 普克尔盒电光开关; PCF, 光子晶体光纤; CFBG, 啁啾光纤布拉格光栅

    Fig. 1.  Schematic of the active pump-signal synchronization for our frontend ps-OPCPA. BS: beam splitter, PC: Pockels cell, PCF: photonic-crystal fiber, CFBG: Chirped fiber Bragg grating.

    图 2  数值模拟泵浦光与信号光同步时间对信号光 (a)输出光谱以及(b)输出能流的影响

    Fig. 2.  Numerical simulation the influence of pump-signal synchronization on the (a) signal output spectrum and (b) energy fluence.

    图 3  同步主动控制回路不工作时ps-OPCPA输出能量波动情况

    Fig. 3.  Energy fluctuation of the ps-OPCPA when the active pump-signal synchronization is not working.

    图 4  同步主动控制回路不工作时ps-OPCPA输出光谱变化情况

    Fig. 4.  Spectral evolution of the ps-OPCPA when the active pump-signal synchronization is not working.

    图 5  同步主动控制回路不工作时反馈光路参量放大输出光谱变化情况

    Fig. 5.  Spectral evolution of the feedback OPCPA when the active pump-signal synchronization is not working.

    图 6  同步主动控制回路不工作时 (a)主光路ps-OPCPA输出能量与反馈光路峰值波长之间的对应关系; (b)主光路泵浦光与信号光相对同步时间抖动

    Fig. 6.  (a) Relationship between the output energy of the main ps-OPCPA and the peak wavelength of the feedback OPCPA, and (b) relative time jitter between pump and signal when the active pump-signal synchronization is not working.

    图 7  ps-OPCPA泵浦光与信号光同步时间主动控制流程(a)及处理界面(b)

    Fig. 7.  Flow chart (a) and interface (b) of the active pump-signal synchronization for our ps-OPCPA.

    图 8  同步主动控制回路工作时ps-OPCPA的输出能量及泵浦光与信号光之间的相对同步时间抖动

    Fig. 8.  Output energy of the ps-OPCPA and relative time jitter between pump and signal when the active pump-signal synchronization is working.

    图 9  同步主动控制回路工作时ps-OPCPA稳定的光谱输出

    Fig. 9.  Output of stable spectra for the ps-OPCPA when the active pump-signal synchronization is working.

    图 10  信号光输出光束形貌 (a)不加载泵浦情况下; (b)信号光输出能量100 μJ能量下

    Fig. 10.  Signal beam profile: (a) without pump; (b) under 100 μJ output energy.

    Baidu
  • [1]

    Papadopoulos D N, Pamirez P, Genevrier K, Ranc L, Lebas N, Pellegrina A, Le Blanc C, Monot P, Martin L, Zou J P, Mathieu F, Audebert P, Georges P, Druon F 2017 Opt. Lett. 42 3530Google Scholar

    [2]

    Lureau F, Matras G, Chalus O, Derycke C, Morbieu T, Radier C, Casagrande O, Laux S, Ricaud S, Rey G, Pellegrina A, Richard C, Boudjemaa L, Simon-Boisson C, Baleanu A, Banici R, Gradinariu A, Caldararu C, De Boisdeffre B, Ghenuche P, Naziru A, Kolliopoulos G, Neagu L, Dabu R, Dancus I, Ursescu D 2020 High Power laser Sci. Eng. 8 e43Google Scholar

    [3]

    Archipovaite G, Galletti M, Oliveira P, Galimberti M, Frackiewicz A, Musgrave I, Hernandez-Gomez C 2020 Opt. Commun. 474 126072Google Scholar

    [4]

    Bromage J, Bahk S-W, Begishev I A, Dorrer C, Guardalben M J, Hoffman B N, Oliver J B, Roides R G, Schiesser E M, Shoup III M J, Spilatro M, Webb B, Weiner D, Zuegel J D 2019 High Power laser Sci. Eng. 7 e43Google Scholar

    [5]

    Zeng X M, Zhou K N, Zuo Y L, Zhu Q H, Su J Q, Wang X, Wang X D, Huang X J, Jiang X J, Jiang D B, Guo Y, Xie N, Zhou S, Wu Z H, Mu J, Peng H, Jin F 2017 Opt. Lett. 42 2014Google Scholar

    [6]

    Xiao Q, Pan X, Jiang Y E, Wang J F, Du L F, Guo J T, Huang D J, Lu X H, Cui Z J, Yang S S, Wei H, Wang X C, Xiao Z L, Li G Y, Wang X Q, Yang X P O, Fan W, Li X C, Zhu J Q 2021 Opt. Express 29 15980Google Scholar

    [7]

    Ishii N, Teisset C Y, Fuji T, Köhler S, Schmid K, Veisz L, Baltuska A, Krausz F 2006 IEEE J. Quantum Electron. 12 173Google Scholar

    [8]

    Teisset C Y, Ishii N, Fuji T, Metzger T, Köhler S, Holzwarth R, Baltuška A, Zheltikov A M, Krausz F 2005 Opt. Express 13 6550Google Scholar

    [9]

    Wandt C, Klingebiel S, Keppler S, Hornung M, Loeser M, Siebold M, Skrobol C, Kessel A, Trushin S A, Major Z, Hein J, Kaluza M C, Krausz F, Karsch S 2014 Laser Photonics Rev. 8 875Google Scholar

    [10]

    Riedel R, Schulz M, Prandolini M J, Hage A, Höppner H, Gottschall T, J. Limpert, Drescher M, Tavella F 2013 Opt. Express 21 28987Google Scholar

    [11]

    Wagner F, João C P, Fils J, Gottschall T, Hein J, Körner J, Limpert J, Roth M, Stöhlker T, Bagnoud V 2014 Appl. Phys. B. 116 429Google Scholar

    [12]

    杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪 2018 67 094206Google Scholar

    Yang C, Gu C L, Liu Y, Wang C, Li J, Li W X 2018 Acta Phys. Sin. 67 094206Google Scholar

    [13]

    Schwarz A, Ueffing M, Deng Y P, Gu X, Fattahi H, Metzger T, Ossiander M, Krausz F, Kienberger R 2012 Opt. Express 20 5557Google Scholar

    [14]

    Prinz S, Häfner M, Schultze M, Teisset C Y, Bessing R, Michel K, Kienberger R, T Metzger 2014 Opt. Express 22 31050Google Scholar

    [15]

    Batysta F, Antipenkov R, Green J T, Naylon J A, Novák J, Mazanec T, Hříbek P, Zervos C, Bakule P, Rus B 2014 Opt. Express 22 30281Google Scholar

    [16]

    Bromage J, Rothhardt J, Hädrich S, Dorrer C, Jocher C, Demmler S, Limpert J, Tünnermann A, Zuegel J D 2011 Opt. Express 19 16797Google Scholar

    [17]

    李纲, 刘红杰, 卢峰, 温贤伦, 何颖玲, 张发强, 戴增海 2015 64 020602Google Scholar

    Li G, Liu H J, Lu F, Wen X L, He Y L, Zhang F Q, Dai Z H 2015 Acta Phys. Sin. 64 020602Google Scholar

    [18]

    Witte S, Zinkstok R T, Hogervorst W, Eikema K S E 2007 Appl. Phys. B 87 677Google Scholar

    [19]

    Andrianov A, Szabo A, Sergeev A, Kim A, Chvykov V, Kalashnikov M 2016 Opt. Express 24 25974Google Scholar

    [20]

    Klingebiel S 2013 Ph. D. Dissertation (München: Ludwig-Maximilians-Universität München)

    [21]

    Ross I N, Matousek P, New G H C, Osvay K 2002 J. Opt. Soc. Am. B: 19 2945Google Scholar

    [22]

    Trebino R 2002 Frequency-Resolved Optical Gating: The measurement of Ultrashort Laser Pulses (Boston: Kluwer Academic Publishers)

    [23]

    Galletti M, Oliveira P, Galimberti M, Ahmad M, Archipovaite G, Booth N, Dilworth E, Frackiewicz A, Winstone T, Musgrave I, Hernandez-Gomez C 2020 High Power Laser Sci. Eng. 8 e31Google Scholar

  • [1] 王柯俭, 滕浩, 邢笑伟, 董朔, 曹凯强, 江昱佼, 赵昆, 朱江峰, 刘文军, 魏志义. 长距离泵浦-探测系统的阿秒精度锁定.  , 2024, 73(19): 194201. doi: 10.7498/aps.73.20241061
    [2] 陈经纬, 罗斌, 曾小明, 母杰, 王逍. 光参量啁啾脉冲放大数值模拟平台中超短脉冲聚焦模拟算法.  , 2023, 72(9): 094204. doi: 10.7498/aps.72.20222387
    [3] 叶荣, 钟哲强, 吴显云. 基于光束偏转的扫描式宽带光参量啁啾脉冲放大.  , 2019, 68(2): 024205. doi: 10.7498/aps.68.20181538
    [4] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡.  , 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [5] 邓青华, 张小民, 丁磊, 唐军, 谢旭东, 卢振华, 赵润昌, 董一方. 应用级联倍频方法提高倍频系统输出稳定性研究.  , 2011, 60(2): 024213. doi: 10.7498/aps.60.024213
    [6] 朱启华, 周寿桓, 赵磊, 曾小明, 黄征, 周凯南, 王逍, 黄小军, 冯国英. 利用光孤子机制实现超宽范围波长调谐的理论和实验研究.  , 2011, 60(8): 084215. doi: 10.7498/aps.60.084215
    [7] 邓青华, 丁磊, 贺少勃, 唐军, 谢旭东, 卢振华, 董一芳. 光参量啁啾脉冲放大系统非线性晶体长度确定及调谐方法研究.  , 2010, 59(4): 2525-2531. doi: 10.7498/aps.59.2525
    [8] 谢旭东, 朱启华, 曾小明, 王逍, 黄小军, 左言磊, 张颖, 周凯南, 黄征. 钕玻璃啁啾脉冲放大器产生百焦耳亚皮秒脉冲.  , 2009, 58(11): 7690-7694. doi: 10.7498/aps.58.7690
    [9] 曾曙光, 张彬. 光参量啁啾脉冲放大的逆问题.  , 2009, 58(4): 2476-2481. doi: 10.7498/aps.58.2476
    [10] 江 阳, 于晋龙, 胡 浩, 张爱旭, 张立台, 王文睿, 杨恩泽. 信号光的调制对基于光纤光参量放大光脉冲源的改善.  , 2008, 57(5): 2994-3000. doi: 10.7498/aps.57.2994
    [11] 赵 环, 赵研英, 田金荣, 王 鹏, 朱江峰, 令维军, 魏志义. 两台独立飞秒钛宝石振荡器的高精度主动同步研究.  , 2008, 57(2): 892-896. doi: 10.7498/aps.57.892
    [12] 刘华刚, 章若冰, 朱 晨, 柴 路, 王清月. 非单色光抽运的光参量啁啾脉冲放大的带宽及增益特性研究.  , 2008, 57(5): 2981-2986. doi: 10.7498/aps.57.2981
    [13] 姜永亮, 赵保真, 梁晓燕, 冷雨欣, 李儒新, 徐至展, 胡小鹏, 祝世宁. 基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大.  , 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
    [14] 翟 惠, 徐世祥, 许智雄, 蔡 华, 杨 旋, 吴 昆, 曾和平. 与794nm飞秒激光精确同步的无直流背底的1064nm脉冲光的产生.  , 2007, 56(5): 2821-2827. doi: 10.7498/aps.56.2821
    [15] 刘华刚, 章若冰, 张海清, 朱 晨, 马 晶, 王清月. 发散光束抽运的宽带光参量啁啾脉冲放大系统的理论研究.  , 2007, 56(8): 4635-4641. doi: 10.7498/aps.56.4635
    [16] 王 鹏, 赵 环, 王兆华, 李德华, 魏志义. 飞秒与皮秒激光脉冲的主动同步及和频产生宽带超短激光的研究.  , 2006, 55(8): 4161-4165. doi: 10.7498/aps.55.4161
    [17] 夏光琼, 吴正茂, 林恭如. 利用较完善模型研究半导体光放大器对皮秒光脉冲的放大.  , 2004, 53(2): 490-493. doi: 10.7498/aps.53.490
    [18] 朱鹏飞, 钱列加, 薛绍林, 林尊琪. 基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性分析与系统设计.  , 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
    [19] 刘红军, 陈国夫, 赵卫, 王屹山, 赵尚弘. 用光学参量啁啾脉冲放大技术产生TW级激光脉冲系统的最优化设计.  , 2001, 50(9): 1717-1722. doi: 10.7498/aps.50.1717
    [20] 佘卫龙, 李庆行, 余振新, 高兆兰, 莫党, 朱德瑞. 相位共轭皮秒光脉冲的直接观察和记录.  , 1993, 42(2): 264-272. doi: 10.7498/aps.42.264
计量
  • 文章访问数:  4305
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 修回日期:  2021-12-03
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回
Baidu
map