搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒啁啾Gauss型脉冲在稠密Λ型三能级原子介质中的传播

王振东 梁变 刘中波 樊锡君

引用本文:
Citation:

飞秒啁啾Gauss型脉冲在稠密Λ型三能级原子介质中的传播

王振东, 梁变, 刘中波, 樊锡君

Propagation of femtosecond chirped Gaussian pulse in dense three-level Λ-type atomic medium

Wang Zhen-Dong, Liang Bian, Liu Zhong-Bo, Fan Xi-Jun
PDF
导出引用
  • 利用由预估校正(PC)- 时域有限差分(FDTD)法求得的不含慢变包络近似(SVEA)和旋转波近似(RWA)的全波Maxwell-Bloch方程的数值解, 研究了飞秒啁啾Gauss型激光脉冲(以下简称啁啾脉冲)在稠密Λ型三能级原子介质中的传播.研究表明,啁啾系数(C)的正负及大小的变化对脉冲传播特性有显著的影响,而且这个影响与脉冲面积的大小密切相关.面积小于4π的啁啾脉冲,在介质中传播时不发生分裂,且啁啾脉冲逐渐演化为一个近似的无啁啾(C=0)脉冲,这一特点不随啁啾系数的改变而
    We investigate propagation of femtosecond chirped Gaussian laser pulse in a dense three-level Λ-type atomic medium by using the numerical solution of the full Maxwell-Bloch equations without the slowly varying envelope and the rotating-wave approximations, and the solution is obtained by PC-FDTD method. It is shown that, variation of the sign and size of the chirp coefficient has considerable effect on pulse propagation property, and the effect is closely relative to size of the pulse area. When the area of chirped pulse is smaller than 4π, splitting doesn’t occur and the chirped pulse evolves gradually to an approximate normal Gaussian pulse (C=0), and this characteristic doesn’t vary with the chirp coefficient varying. However, variation of the chirp coefficient will changed the amplitude and group velocity of the pulse. For the positive chirp(C>0), amplitude and group velocity of the pulse decrease with chirp coefficient increasing, for the negative chirp(CC increasing. Both the chirped pulses with area equal to larger than 4π will split into sub-pulses of different numbers and shapes, the time and number of the pulse splitting will be determined by the sign and size of the chirp coefficient. But in the two cases, the pulse splitting patterns are much different, and the effects of the coefficient are also different. When the pulse area equals 4π, larger chirp coefficient will lead to increased sub-pulse number, but when the pulse area is larger than 4π, larger chirp coefficient will lead to decreased sub-pulse number. In addition, regardless of pulse area being larger or smaller, changing sign and size of the chirp coefficient always produces obvious effect on the atomic population.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2006CB806000)、国家自然科学基金(批准号:10875072)和中国科学院上海光机所强场激光物理国家重点实验室开放基金资助的课题.
    [1]

    Brabec T,Krausz F 2000 Rev. Mod. Phys. 72 545

    [2]

    Yang W F,Song X H,Gong S Q,Cheng Y,Xu Z Z 2007 Phys. Rev. Lett. 99 133602

    [3]

    Winterfeldt C,Spielmann C,Gerber G 2008 Rev. Mod. Phys. 80 117

    [4]

    Quan W,Lin Z,Wu M,Kang H,Liu H,Liu X,Chen J,Liu J,He X T,Chen S G, Xiong H,Guo L,Xu H,Fu Y,Cheng Y,Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [5]

    Hu Q L,Liu S B,Li W 2008 Chin. Phys. B 17 1050

    [6]

    He M Q,Dong Q L,Sheng Z M,Wong S M,Chen M,Wu H C,Zhang J 2009 Acta Phys. Sin. 58 363 (in Chinese) [何民卿、董全力、盛政明、翁苏明、陈 民、武慧春、张 杰 2009 58 363]

    [7]

    Peng Y J,Liu Y Q,Wang Y H,Zhang S P,Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶、刘玉强、王英惠、张淑平、杨延强 2009 58 655]

    [8]

    Zhao Z G,Pan L Z,Lü B D 2008 Chin. Phys. B 17 2451

    [9]

    Lu D Q,Hu W,Qian L J,Fan D Y 2009 Acta Phys. Sin. 58 1655 (in Chinese) [陆大全、胡 巍、钱列加、范滇元 2009 58 1655]

    [10]

    Sun Y P,Liu J C,Wang C K 2009 Acta Phys. Sin. 58 3934 (in Chinese) [孙玉萍、刘纪彩、王传奎 2009 58 3934]

    [11]

    McCall S L,Hahn E L 1969 Phys. Rev. 183 457

    [12]

    Lamb G L,JR 1971 Rev. Mod. Phys. 43 99

    [13]

    Ziolkowski R W,Arnold J M,Gongny D M 1995 Phys. Rev. A 52 3082

    [14]

    Hughes S 1998 Phys. Rev. Lett. 81 3363

    [15]

    Song X H,Gong S Q,Li R X,Xu Z Z 2006 Phys. Rev. A 74 015802

    [16]

    Yang W F,Song X H,Gong S Q,Xu Z Z 2007 Phys. Rev. Lett. 99 133602

    [17]

    Xiao J,Wang Z Y,Xu Z Z 2002 Phys. Rev. A 65 031402

    [18]

    Song X H,Gong S Q,Yang W F,Xu Z Z 2004 Phys. Rev. A 70 013817

    [19]

    Netz R,Feurer T 2001 Phys. Rev. A 64 043808

    [20]

    Song X,Gong S,Xu Z 2005 Opt. Spectrosc. 99 517

    [21]

    Loiko Y,Serrat C 2006 Phys. Rev. A 73 063809

    [22]

    Bowden C M,Dowling J P 1993 Phys. Rev. A 47 1247

    [23]

    Wang N J,Rabitz H 1995 Phys. Rev. A 51 5029

    [24]

    Crenshaw M E,Sullivan K U,Bowden C M 1997 Opt. Express 1 152

    [25]

    Calderón O G,Antón M A,Carreo F 2003 Eur. Phys. J. D 25 77

    [26]

    Dung H T,Buhmann S Y,Welsch D G 2006 Phys. Rev. A 74 023802

    [27]

    Xia K Y,Gong S Q,Liu C P,Song X H,Niu Y P 2005 Opt. Express 13 5913

    [28]

    Ma H,Fan X J,Tan X,Lu H W,Xu Z Z 2008 Opt. Comm. 281 4493

    [29]

    Tan X,Fan X J,Yang Y L,Tong D M 2008 J. Mod. Opt. 55 2439

    [30]

    Zhang X Z,Ren Z Z,Jia G R,Guo X T,Gong W G 2008 Chin. Phys. B 17 4476

    [31]

    Zhdanovich S,Shapiro E A,Shapiro M,Hepburn J W,Milner V 2008 Phys. Rev. Lett. 100 103004

    [32]

    Zhdanovich S,Shapiro E A,Hepburn J W,Shapiro M,Milner V 2009 Phys. Rev. A 80 063405

    [33]

    Carrera J J,Chu S I 2007 Phys. Rev. A 75 033807

    [34]

    Zhao S F,Zhou X X,Li P C,Chen Z J 2008 Phys. Rev. A 78 063404

    [35]

    Krausz F,Ivanov M 2009 Rev. Mod. Phys. 81 163

    [36]

    Xiang Y,Niu Y P,Gong S Q 2009 Phys. Rev. A 79 053419

    [37]

    Clow S D,Trallero-Herrero C,Bergeman T,Weinacht T 2008 Phys. Rev. Lett. 100 233603

    [38]

    Lee S,Lim J,Ahn J 2009 Opt. Express 17 7648

    [39]

    Shen J L,Zhang C L,Hu Y,Jamison S P 2004 Acta Phys. Sin. 53 2212 (in Chinese) [沈京玲、张存林、胡 颖、Jamison S P 2004 53 2212]

    [40]

    Klaus M,Shaw J K 2001 Opt. Commun. 197 491

    [41]

    Desaix M,Helczynski L,Anderson D,Lisak M 2002 Phys. Rev. E 65 056602

    [42]

    Song X H,Gong S Q,Yang W F,Jin S Q,Feng X L,Xu Z Z 2004 Opt. Comm. 236 151

    [43]

    Centini M,Bloemer M,Myneni K,Scalora M,Sibilia C,Bertolotti M,Aguanno G D 2003 Phys. Rev. E 68 016602

    [44]

    Yang Z J,Hu W,Fu X Q,Lu D Q,Zheng Y Z 2003 Acta Phys. Sin. 52 1920 (in Chinese) [杨振军、胡 巍、傅喜泉、陆大全、郑一周 2003 52 1920]

    [45]

    Song L J,Wu L,Zhang Y F,Yang R C 2009 Acta Phys. Sin. 58 2816 (in Chinese)[宋丽军、吴 亮、张艳峰、杨荣草 2009 58 2816]

    [46]

    Jackson J D 2001 Classical Electrodynamics 3rd Ed. (New York: Wiley) p160

    [47]

    Yee K S 1996 IEEE T. Antenn. Propag. 14 302

    [48]

    Tarasishin A V,Magnitskii S A,Shuaev V A,Zheltikov A 2001 Opt. Express 8 452

  • [1]

    Brabec T,Krausz F 2000 Rev. Mod. Phys. 72 545

    [2]

    Yang W F,Song X H,Gong S Q,Cheng Y,Xu Z Z 2007 Phys. Rev. Lett. 99 133602

    [3]

    Winterfeldt C,Spielmann C,Gerber G 2008 Rev. Mod. Phys. 80 117

    [4]

    Quan W,Lin Z,Wu M,Kang H,Liu H,Liu X,Chen J,Liu J,He X T,Chen S G, Xiong H,Guo L,Xu H,Fu Y,Cheng Y,Xu Z Z 2009 Phys. Rev. Lett. 103 093001

    [5]

    Hu Q L,Liu S B,Li W 2008 Chin. Phys. B 17 1050

    [6]

    He M Q,Dong Q L,Sheng Z M,Wong S M,Chen M,Wu H C,Zhang J 2009 Acta Phys. Sin. 58 363 (in Chinese) [何民卿、董全力、盛政明、翁苏明、陈 民、武慧春、张 杰 2009 58 363]

    [7]

    Peng Y J,Liu Y Q,Wang Y H,Zhang S P,Yang Y Q 2009 Acta Phys. Sin. 58 655 (in Chinese) [彭亚晶、刘玉强、王英惠、张淑平、杨延强 2009 58 655]

    [8]

    Zhao Z G,Pan L Z,Lü B D 2008 Chin. Phys. B 17 2451

    [9]

    Lu D Q,Hu W,Qian L J,Fan D Y 2009 Acta Phys. Sin. 58 1655 (in Chinese) [陆大全、胡 巍、钱列加、范滇元 2009 58 1655]

    [10]

    Sun Y P,Liu J C,Wang C K 2009 Acta Phys. Sin. 58 3934 (in Chinese) [孙玉萍、刘纪彩、王传奎 2009 58 3934]

    [11]

    McCall S L,Hahn E L 1969 Phys. Rev. 183 457

    [12]

    Lamb G L,JR 1971 Rev. Mod. Phys. 43 99

    [13]

    Ziolkowski R W,Arnold J M,Gongny D M 1995 Phys. Rev. A 52 3082

    [14]

    Hughes S 1998 Phys. Rev. Lett. 81 3363

    [15]

    Song X H,Gong S Q,Li R X,Xu Z Z 2006 Phys. Rev. A 74 015802

    [16]

    Yang W F,Song X H,Gong S Q,Xu Z Z 2007 Phys. Rev. Lett. 99 133602

    [17]

    Xiao J,Wang Z Y,Xu Z Z 2002 Phys. Rev. A 65 031402

    [18]

    Song X H,Gong S Q,Yang W F,Xu Z Z 2004 Phys. Rev. A 70 013817

    [19]

    Netz R,Feurer T 2001 Phys. Rev. A 64 043808

    [20]

    Song X,Gong S,Xu Z 2005 Opt. Spectrosc. 99 517

    [21]

    Loiko Y,Serrat C 2006 Phys. Rev. A 73 063809

    [22]

    Bowden C M,Dowling J P 1993 Phys. Rev. A 47 1247

    [23]

    Wang N J,Rabitz H 1995 Phys. Rev. A 51 5029

    [24]

    Crenshaw M E,Sullivan K U,Bowden C M 1997 Opt. Express 1 152

    [25]

    Calderón O G,Antón M A,Carreo F 2003 Eur. Phys. J. D 25 77

    [26]

    Dung H T,Buhmann S Y,Welsch D G 2006 Phys. Rev. A 74 023802

    [27]

    Xia K Y,Gong S Q,Liu C P,Song X H,Niu Y P 2005 Opt. Express 13 5913

    [28]

    Ma H,Fan X J,Tan X,Lu H W,Xu Z Z 2008 Opt. Comm. 281 4493

    [29]

    Tan X,Fan X J,Yang Y L,Tong D M 2008 J. Mod. Opt. 55 2439

    [30]

    Zhang X Z,Ren Z Z,Jia G R,Guo X T,Gong W G 2008 Chin. Phys. B 17 4476

    [31]

    Zhdanovich S,Shapiro E A,Shapiro M,Hepburn J W,Milner V 2008 Phys. Rev. Lett. 100 103004

    [32]

    Zhdanovich S,Shapiro E A,Hepburn J W,Shapiro M,Milner V 2009 Phys. Rev. A 80 063405

    [33]

    Carrera J J,Chu S I 2007 Phys. Rev. A 75 033807

    [34]

    Zhao S F,Zhou X X,Li P C,Chen Z J 2008 Phys. Rev. A 78 063404

    [35]

    Krausz F,Ivanov M 2009 Rev. Mod. Phys. 81 163

    [36]

    Xiang Y,Niu Y P,Gong S Q 2009 Phys. Rev. A 79 053419

    [37]

    Clow S D,Trallero-Herrero C,Bergeman T,Weinacht T 2008 Phys. Rev. Lett. 100 233603

    [38]

    Lee S,Lim J,Ahn J 2009 Opt. Express 17 7648

    [39]

    Shen J L,Zhang C L,Hu Y,Jamison S P 2004 Acta Phys. Sin. 53 2212 (in Chinese) [沈京玲、张存林、胡 颖、Jamison S P 2004 53 2212]

    [40]

    Klaus M,Shaw J K 2001 Opt. Commun. 197 491

    [41]

    Desaix M,Helczynski L,Anderson D,Lisak M 2002 Phys. Rev. E 65 056602

    [42]

    Song X H,Gong S Q,Yang W F,Jin S Q,Feng X L,Xu Z Z 2004 Opt. Comm. 236 151

    [43]

    Centini M,Bloemer M,Myneni K,Scalora M,Sibilia C,Bertolotti M,Aguanno G D 2003 Phys. Rev. E 68 016602

    [44]

    Yang Z J,Hu W,Fu X Q,Lu D Q,Zheng Y Z 2003 Acta Phys. Sin. 52 1920 (in Chinese) [杨振军、胡 巍、傅喜泉、陆大全、郑一周 2003 52 1920]

    [45]

    Song L J,Wu L,Zhang Y F,Yang R C 2009 Acta Phys. Sin. 58 2816 (in Chinese)[宋丽军、吴 亮、张艳峰、杨荣草 2009 58 2816]

    [46]

    Jackson J D 2001 Classical Electrodynamics 3rd Ed. (New York: Wiley) p160

    [47]

    Yee K S 1996 IEEE T. Antenn. Propag. 14 302

    [48]

    Tarasishin A V,Magnitskii S A,Shuaev V A,Zheltikov A 2001 Opt. Express 8 452

  • [1] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究.  , 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [2] 曹辉, 宋有建, 于佳禾, 师浩森, 胡明列, 王清月. 奇异谱分析用于提升双光梳激光测距精度.  , 2018, 67(1): 010601. doi: 10.7498/aps.67.20171922
    [3] 刘丹, 洪伟毅, 郭旗. 周期量级飞秒脉冲电场在非线性克尔介质中的传输.  , 2016, 65(1): 014208. doi: 10.7498/aps.65.014208
    [4] 孟祥昊, 刘华刚, 黄见洪, 戴殊韬, 邓晶, 阮开明, 陈金明, 林文雄. Ba1-xB2-y-zO4SixAlyGaz晶体和频可调谐深紫外飞秒激光器.  , 2015, 64(16): 164205. doi: 10.7498/aps.64.164205
    [5] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究.  , 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [6] 谢辰, 胡明列, 张大鹏, 柴路, 王清月. 基于多通单元的高能量耗散孤子锁模光纤振荡器.  , 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [7] 葛绪雷, 马景龙, 郑轶, 鲁欣, 蒋刚, 李玉同, 魏志义, 张杰. 多脉冲序列飞秒钛宝石激光的啁啾脉冲放大.  , 2012, 61(21): 214206. doi: 10.7498/aps.61.214206
    [8] 秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月. 基于飞秒激光平衡光学互相关的任意长绝对距离测量.  , 2012, 61(24): 240601. doi: 10.7498/aps.61.240601
    [9] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器.  , 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [10] 张慧, 卢娟, 文锦辉, 雷亮, 焦中兴, 赖天树. 不同波长飞秒脉冲的相位测量.  , 2011, 60(12): 124211. doi: 10.7498/aps.60.124211
    [11] 孙玉萍, 刘纪彩, 王传奎. 含时电离对飞秒脉冲激光在强双光子吸收介质中传播特性和光限幅行为的影响.  , 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [12] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器.  , 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [13] 刘 军, 陈晓伟, 刘建胜, 冷雨欣, 朱 毅, 戴 君, 李儒新, 徐至展. 负啁啾高强度飞秒脉冲在正常色散材料中传输特性研究.  , 2006, 55(4): 1821-1826. doi: 10.7498/aps.55.1821
    [14] 田金荣, 韩海年, 赵研英, 王 鹏, 张 炜, 魏志义. 基于啁啾镜色散补偿技术的超宽带飞秒激光脉冲.  , 2006, 55(9): 4725-4728. doi: 10.7498/aps.55.4725
    [15] 谢旭东, 王清月, 柴 路. 频域标定飞秒脉冲干涉自相关迹及钛宝石振荡器实时啁啾监测.  , 2005, 54(8): 3657-3660. doi: 10.7498/aps.54.3657
    [16] 韩英魁, 王清月, 张志刚, 张伟力, 柴 路, 袁晓东, 黄小军. 飞秒啁啾脉冲放大系统中折叠反射式望远镜对脉冲波前的影响.  , 2005, 54(4): 1613-1618. doi: 10.7498/aps.54.1613
    [17] 王屹山, 刘红军, 程 昭, 赵 卫, 王勇刚, 马骁宇, 张志刚. 利用SBR实现自启动锁模钛宝石飞秒激光脉冲的产生.  , 2005, 54(11): 5184-5188. doi: 10.7498/aps.54.5184
    [18] 韩海年, 魏志义, 张 军, 聂玉昕. 飞秒钛宝石激光脉冲的载波包络相移测量研究.  , 2005, 54(1): 155-158. doi: 10.7498/aps.54.155
    [19] 王淮生, 孙大睿, 张志刚, 柴 路, 王清月. 啁啾飞秒激光脉冲形成的光纤光栅的Bragg反射特性.  , 2003, 52(9): 2185-2189. doi: 10.7498/aps.52.2185
    [20] 孙敬华, 章若冰, 胡有方, 张志刚, 王清月. 自启动KLM钛宝石激光器谐振腔的理论计算.  , 2002, 51(6): 1272-1278. doi: 10.7498/aps.51.1272
计量
  • 文章访问数:  8028
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-19
  • 修回日期:  2010-01-19
  • 刊出日期:  2010-05-05

/

返回文章
返回
Baidu
map