-
Due to their excellent physical and chemical properties, inorganic crystal materials have shown extensive application potential in many fields. Elastic properties such as shear modulus and bulk modulus play an important role in predicting the electrical conductivity, thermal conductivity and mechanical properties of materials. However, the traditional experimental measurement method has some problems such as high cost and low effciency. With the development of computational methods, theoretical simulation has gradually become an effective alternative to experiments. In recent years, graph neural networkbased machine learning methods have achieved remarkable results in the prediction of elastic properties of inorganic crystal materials, especially crystal graph convolutional neural networks (CGCNN), which perform well in the prediction and expansion of material data. In this study, two CGCNN models were trained using the shear modulus and bulk modulus data of 10,987 materials collected in the Matbench v0.1 dataset. These models show high accuracy and good generalization ability in predicting shear modulus and bulk modulus. The mean absolute error (MAE) is less than 13 and the coeffcient of determination (R2) is close to 1.We then screened two datasets with a band gap between 0.1 and 3.0 eV and excluded compounds containing radioactive elements. The dataset consists of two parts: The first part is composed of 54,359 crystal structures selected from the Materials Project database, which constitutes the MPED dataset; The second part is the 26,305 crystal structures discovered by Merchant et al. (Nature 624 , 80 (2023) through deep learning and graph neural network methods, which constitute the NED dataset. Finally, the shear modulus and bulk modulus of 80,664 inorganic crystals are predicted in this study, which enriches the existing material elastic data resources and provides more data support for material design. This dataset is publicly available and can be accessed via the Science Data Bank at https://doi.org/10.57760/sciencedb.j00213.00104.
-
Keywords:
- Inorganic crystal materials /
- Elastic modulus /
- Machine learning
-
[1] Koester S J, Schaub J D, Dehlinger G, Chu J O 2006 Ieee. J. Sel. Top. Quant. 121489
[2] Seo D, Gregory J, Feldman L, Tolk N, Cohen P 2011 Phys. Rev. B 83195203
[3] Parola S, Julián-López B, Carlos L D, Sanchez C 2016 Adv. Funct. Mater. 266506
[4] Sanchez C, Lebeau B, Chaput F, Boilot J P 2003 Adv. Mater. 151969
[5] Beekman M, Cahill D G 2017 Cryst. Res. Technol. 521700114
[6] Tan J C, Cheetham A K 2011 Chem. Soc. Rev. 401059
[7] Reddy C M, Krishna G R, Ghosh S 2010 CrystEngComm 122296
[8] Wang X, Shu G, Zhu G, Wang J S, Sun J, Ding X, Li B, Gao Z 2024 Mater. Today Phys. 48101549
[9] Chen L, Tran H, Batra R, Kim C, Ramprasad R 2019 Comput. Mater. Sci. 170109155
[10] Lake G J, Thomas A G 1967 Proc. R. Soc. Lond. A Math. Phys. Sci. 300108
[11] Pugh S 1954 Philos. Mag. J. Sci. 45823
[12] Niu H, Chen X Q, Liu P, Xing W, Cheng X, Li D, Li Y 2012 Sci. Rep. 2718
[13] Gschneidner Jr K, Russell A, Pecharsky A, Morris J, Zhang Z, Lograsso T, Hsu D, Chester Lo C, Ye Y, Slager A, et al. 2003 Nat. Mater. 2587
[14] Greaves G N, Greer A L, Lakes R S, Rouxel T 2011 Nat. Mater. 10823
[15] de Jong M, Olmsted D L, van de Walle A, Asta M 2012 Phys. Rev. B 86224101
[16] de Jong M, van der Zwaag S, Sluiter M 2012 Int. J. Mater. Res. 103972
[17] Xie T, Grossman J C 2018 Phys. Rev. Lett. 120145301
[18] Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos a J 1992 Rev. Mod. Phys. 641045
[19] Wang J, Yang X, Zeng Z, Zhang X, Zhao X, Wang Z 2017 Comput. Mater. Sci. 138135
[20] Plimpton S 1995 J. Comput. Phys. 1171
[21] Grigoras S, Gusev A, Santos S, Suter U 2002 Polymer 43489
[22] Belytschko T, Black T 1999 Int. J. Numer. Methods Eng. 45601
[23] Tian Z, Zhang S, Chern G W 2023 Phys. Rev. E 108065304
[24] Zhao Y, Yuan K, Liu Y, Louis S Y, Hu M, Hu J 2020 J. Phys. Chem. C 12417262
[25] Chibani S, Coudert F X 2020 Apl. Mater. 8080701
[26] Chew A K, Sender M, Kaplan Z, Chandrasekaran A, Chief Elk J, Browning A R, Kwak H S, Halls M D, Afzal M A F 2024 J. Cheminformatics 1631
[27] Karamad M, Magar R, Shi Y, Siahrostami S, Gates I D, Barati Farimani A 2020 Phys. Rev. Mater. 4093801
[28] Choudhary K, DeCost B 2021 npj Comput. Mater. 7185
[29] Louis S Y, Zhao Y, Nasiri A, Wang X, Song Y, Liu F, Hu J 2020 Phys. Chem. Chem. Phys. 2218141
[30] Ruff R, Reiser P, Stühmer J, Friederich P 2024 Digit. Discov. 3594
[31] Omee S S, Fu N, Dong R, Hu M, Hu J 2024 npj Comput. Mater. 10144
[32] de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Ande C K, van der Zwaag S, Plata J J, Toher C, Curtarolo S, Ceder G, Persson K A, Asta M 2015 Sci. Data 2150009
[33] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, et al. 2013 APL Mater. 1011002
[34] Curtarolo S, Setyawan W, Hart G L, Jahnatek M, Chepulskii R V, Taylor R H, Wang S, Xue J, Yang K, Levy O, et al. 2012 Comput. Mater. Sci. 58218
[35] Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 651501
[36] Gong X, Li R, Xiao R, Zhang T, Li H 2025 Chin.Phys.B 34016101
[37] Atomly https://atomly.net/
[38] Jiang Y, Yu Z, Wang Y, Lu T, Meng S, Jiang K, Liu M 2022 Chin. Phys. Lett. 39047402
[39] Dunn A, Wang Q, Ganose A, Dopp D, Jain A 2020 npj Comput. Mater. 6138
[40] Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G, Cubuk E D 2023 Nature 62480
[41] Shuai C, Liu W, Li H, Wang K, Zhang Y, Xie T, Chen L, Hou H, Zhao Y 2023 Int. J. Plast. 170103772
[42] Jia T, Chen G, Zhang Y 2017 Phys. Rev. B 95155206
[43] Qin G, Huang A, Liu Y, Wang H, Qin Z, Jiang X, Zhao J, Hu J, Hu M 2022 Mater. Adv. 36826
[44] Belomestnykh V N, Tesleva E P 2004 Tech. Phys. 491098
[45] Belomestnykh V N 2004 Tech. Phys. Lett. 3091
[46] Toher C, Oses C, Plata J J, Hicks D, Rose F, Levy O, de Jong M, Asta M, Fornari M, Buongiorno Nardelli M, Curtarolo S 2017 Phys. Rev. Mater. 1015401
[47] Wang H, Duan Z, Guo Q, Zhang Y, Zhao Y 2023 Comput. Mater. Contin. 771393
-
补充材料.pdf
Metrics
- Abstract views: 154
- PDF Downloads: 21
- Cited By: 0