搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于弹性模量检测骨疲劳的超声导波方法研究

张正罡 他得安

引用本文:
Citation:

基于弹性模量检测骨疲劳的超声导波方法研究

张正罡, 他得安

Study of bone fatigue evaluation with ultrasonic guide waves based on elastic modulus

Zhang Zheng-Gang, Ta De-An
PDF
导出引用
  • 研究早期诊断骨疲劳的方法是当前骨质评价方面的研究热点之一. 本文对不同弹性模量下长骨中超声导波的传播特性进行了理论分析和仿真研究.首先, 通过数值计算得到导波在管状长骨中的理论解析解.然后对管状长骨进行了时域有限差分(FDTD) 仿真, 并验证了它与理论解析解的一致性, 同时得到长骨中不同模式导波群速度、 中心频率和衰减与弹性模量的关系.研究结果表明各个导波模式的群速度和中心频率均随弹性模量的增加而增加, 而衰减随弹性模量的增加而减小.说明超声导波的传播特性参量可以反映长骨弹性模量的变化, 从而为长骨的早期疲劳诊断提供理论依据.
    How to diagnose the bone fatigue damage at early stages is one of the hot research subjects in bone evaluation field. In this study, the propagation characteristics of ultrasonic guide wave in a long bone under different elastic moduli are analyzed using theoretical calculation and simulation methods. First, theoretical solutions of guided wave in a long bone are calculated. Then, a finite difference time-domain (FDTD) numerical method of simulating the propagation of guide wave in a long bone is presented. The simulation results are in good agreement with the theoretical values. And, the relationship between elastic modulus and the propagation characteristics, including group velocity, central frequency and attenuation, is discussed. The results show that group velocity and central frequency increase with the increase of elastic modulus. However, attenuation decreases with the increase of elastic modulus. Those results demonstrate that the propagation of guide wave can reflect the variation of elastic modulus of long bone, which provides a theoretical basis for evaluating the early stages of fatigue damage in long bone.
    • 基金项目: 国家自然科学基金(批准号: 11174060)、 教育部博士点基金(批准号: 20110071130004)、 上海市重点科技攻关项目(批准号: 09441900400) 和教育部新世纪优秀人才支持计划(批准号: NCET-10-0349)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174060), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110071130004), the Shanghai Key Scientific and Technological Project (Grant No. 09441900400) and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-10-0349).
    [1]

    Lee T C, O'Brien F J, Taylor D 2000 Int. J. Fatigue 22 847

    [2]

    Akkus O, Rimnac C M 2001 J. Biomech. 34 757

    [3]

    Zioupos P, Casinos A 1998 J. Biomech. 31825

    [4]

    Magnusson H I, Ahlborg H G, Karlsson C, Nyquist F, Karlsson M K 2003 Am. J. Sports Med. 31 596

    [5]

    Pidaparti R M, Vogt A 2001 J. Biomed. Mater. Res. 59 282

    [6]

    Haddock S M, Yeh O C, Mummaneni P V, Rosenberg W S, Keaveny T M 2004 J. Biomech. 37 181

    [7]

    Deng M X, Pei J F 2010 Sci. China Ser. G-Phys. Mech. Astron. 53 1286

    [8]

    Pruell C, Kim J Y, Qu J, Jacobs L J 2009 Smart Mater. Struct. 18 035003

    [9]

    Bossy E, Talmant M, Laugier P 2002 J. Acoust. Soc. Am. 112 297

    [10]

    Lee K I, Yoon S W 2004 J. Acoust. Soc. Am. 115 3210

    [11]

    Moilanen P, Talmant M, Bousson Valerie, Nicholson P H F, Cheng S L, Timonen J, Laugier P 2007 J. Acoust. Soc. Am. 122 1818

    [12]

    Bertram A A 1990 Acoustic Fields and Waves in Solids (Second Edition) (Florida: Krieger Publishing Company) pp86-97

    [13]

    Gazis D C 1959 J. Acoust. Soc. Am. 31 568

    [14]

    Ta D A, Wang W Q 2009 Ultrasound Med. Biol. 35 641

    [15]

    Ta D A, Liu Z Q, He P F 2003 Acta Meteriae Compositae Sinica 20 130 (in Chinese) [他得安, 刘镇清, 贺鹏飞2003 复合材料学报 20 130]

    [16]

    Luo G M, Kaufman J J, Chiabrera A, Bianco B, Kinney J H, Haupt D, Ryaby J T, Siffert R S 1999 Ultrasound Med. Biol. 25 5

    [17]

    Chen Z Q, Liu M H, Lan C H, Chen W, Tang L, Luo Z Q, Yan B R, Lü J H, Hu X W 2009 Chin. Phys. B 18 3484

    [18]

    Wang S Y, Liu S B, Le W J L 2010 Chin. Phys. B 19 084101

    [19]

    Tang W, Yan Y B, Li Q L, Wu Z S 2004 Acta Phys. Sin. 53 4173 (in Chinese) [汤炜, 闫玉波, 李清亮, 吴振森 2004 53 4173]

    [20]

    Zhang Y Q, Ge D B 2009 Acta Phys. Sin. 58 4573 (in Chinese) [张玉强, 葛德彪 2009 58 4573]

    [21]

    Deniel G, Tobias L, Jürg D 2004 J. Acoust. Soc. Am. 116 3284

    [22]

    Wang G, Wen J H, Han X Y, Zhao H G 2003 Acta Phys. Sin. 52 1943 (in Chinese) [王刚, 温激鸿, 韩小云, 赵宏刚 2003 52 1943]

  • [1]

    Lee T C, O'Brien F J, Taylor D 2000 Int. J. Fatigue 22 847

    [2]

    Akkus O, Rimnac C M 2001 J. Biomech. 34 757

    [3]

    Zioupos P, Casinos A 1998 J. Biomech. 31825

    [4]

    Magnusson H I, Ahlborg H G, Karlsson C, Nyquist F, Karlsson M K 2003 Am. J. Sports Med. 31 596

    [5]

    Pidaparti R M, Vogt A 2001 J. Biomed. Mater. Res. 59 282

    [6]

    Haddock S M, Yeh O C, Mummaneni P V, Rosenberg W S, Keaveny T M 2004 J. Biomech. 37 181

    [7]

    Deng M X, Pei J F 2010 Sci. China Ser. G-Phys. Mech. Astron. 53 1286

    [8]

    Pruell C, Kim J Y, Qu J, Jacobs L J 2009 Smart Mater. Struct. 18 035003

    [9]

    Bossy E, Talmant M, Laugier P 2002 J. Acoust. Soc. Am. 112 297

    [10]

    Lee K I, Yoon S W 2004 J. Acoust. Soc. Am. 115 3210

    [11]

    Moilanen P, Talmant M, Bousson Valerie, Nicholson P H F, Cheng S L, Timonen J, Laugier P 2007 J. Acoust. Soc. Am. 122 1818

    [12]

    Bertram A A 1990 Acoustic Fields and Waves in Solids (Second Edition) (Florida: Krieger Publishing Company) pp86-97

    [13]

    Gazis D C 1959 J. Acoust. Soc. Am. 31 568

    [14]

    Ta D A, Wang W Q 2009 Ultrasound Med. Biol. 35 641

    [15]

    Ta D A, Liu Z Q, He P F 2003 Acta Meteriae Compositae Sinica 20 130 (in Chinese) [他得安, 刘镇清, 贺鹏飞2003 复合材料学报 20 130]

    [16]

    Luo G M, Kaufman J J, Chiabrera A, Bianco B, Kinney J H, Haupt D, Ryaby J T, Siffert R S 1999 Ultrasound Med. Biol. 25 5

    [17]

    Chen Z Q, Liu M H, Lan C H, Chen W, Tang L, Luo Z Q, Yan B R, Lü J H, Hu X W 2009 Chin. Phys. B 18 3484

    [18]

    Wang S Y, Liu S B, Le W J L 2010 Chin. Phys. B 19 084101

    [19]

    Tang W, Yan Y B, Li Q L, Wu Z S 2004 Acta Phys. Sin. 53 4173 (in Chinese) [汤炜, 闫玉波, 李清亮, 吴振森 2004 53 4173]

    [20]

    Zhang Y Q, Ge D B 2009 Acta Phys. Sin. 58 4573 (in Chinese) [张玉强, 葛德彪 2009 58 4573]

    [21]

    Deniel G, Tobias L, Jürg D 2004 J. Acoust. Soc. Am. 116 3284

    [22]

    Wang G, Wen J H, Han X Y, Zhao H G 2003 Acta Phys. Sin. 52 1943 (in Chinese) [王刚, 温激鸿, 韩小云, 赵宏刚 2003 52 1943]

  • [1] 何欣波, 魏兵. 基于悬挂变量的显式无条件稳定时域有限差分亚网格算法.  , 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [2] 张博凯. 胶体聚合物弹性模量的微观理论: 键长的效应.  , 2021, 70(12): 126401. doi: 10.7498/aps.70.20210128
    [3] 杨红卫, 孟珊珊, 高冉冉, 彭硕. 光子晶体传输特性的时域精细积分法分析.  , 2017, 66(8): 084101. doi: 10.7498/aps.66.084101
    [4] 刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安. 长骨中振动声激发超声导波的方法.  , 2017, 66(15): 154303. doi: 10.7498/aps.66.154303
    [5] 张朝民, 江勇, 尹登峰, 陶辉锦, 孙顺平, 姚建刚. 点缺陷浓度对非化学计量比L12型结构的A13Sc弹性性能的影响.  , 2016, 65(7): 076101. doi: 10.7498/aps.65.076101
    [6] 孙波. 胶原纤维网络和癌细胞的力学微环境.  , 2015, 64(5): 058201. doi: 10.7498/aps.64.058201
    [7] 刘广东, 张开银. 二维电磁逆散射问题的时域高斯-牛顿反演算法.  , 2014, 63(3): 034102. doi: 10.7498/aps.63.034102
    [8] 张维然, 李英姿, 王曦, 王伟, 钱建强. 原子力显微镜高次谐波幅度对样品弹性性质表征的研究.  , 2013, 62(14): 140704. doi: 10.7498/aps.62.140704
    [9] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究.  , 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [10] 颛孙旭, 马西奎. 一种适用于任意阶空间差分时域有限差分方法的色散介质通用吸收边界条件算法.  , 2012, 61(11): 110206. doi: 10.7498/aps.61.110206
    [11] 宋云飞, 于国洋, 殷合栋, 张明福, 刘玉强, 杨延强. 激光超声技术测量高温下蓝宝石单晶的弹性模量.  , 2012, 61(6): 064211. doi: 10.7498/aps.61.064211
    [12] 刘广东, 张业荣. 二维有耗色散介质的时域逆散射方法.  , 2010, 59(10): 6969-6979. doi: 10.7498/aps.59.6969
    [13] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法.  , 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [14] 张玉强, 葛德彪. 一种基于数字信号处理技术的改进通用色散介质移位算子时域有限差分方法.  , 2009, 58(12): 8243-8248. doi: 10.7498/aps.58.8243
    [15] 姜彦南, 葛德彪. 层状介质时域有限差分方法斜入射平面波引入新方式.  , 2008, 57(10): 6283-6289. doi: 10.7498/aps.57.6283
    [16] 王 权, 丁建宁, 何宇亮, 薛 伟, 范 真. 氢化硅薄膜介观力学行为及其与微结构内禀关联特性.  , 2007, 56(8): 4834-4840. doi: 10.7498/aps.56.4834
    [17] 刘大刚, 周 俊, 刘盛纲. 用时域有限差分法实现金属支撑杆的计算机模拟.  , 2007, 56(12): 6924-6930. doi: 10.7498/aps.56.6924
    [18] 倪向贵, 殷建伟. 拉伸条件下双壁碳纳米管弹性性能的原子模拟.  , 2006, 55(12): 6522-6525. doi: 10.7498/aps.55.6522
    [19] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法.  , 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
    [20] 王积方, 李华丽, 唐汝明, 查济璇, 何寿安. 熔石英的弹性模量和超声状态方程.  , 1982, 31(10): 1423-1430. doi: 10.7498/aps.31.1423
计量
  • 文章访问数:  7296
  • PDF下载量:  494
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-22
  • 修回日期:  2011-12-08
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map