-
When the atomic force microscope cantilever in tapping-mode is vibrated at a frequency close to its fundamental resonance frequency, the tip on its free end will be close to and away from the sample periodically. The higher harmonic signals produced by non-linear interactions between the tip and sample surface contain more nanomechanical information. We study the influence on the contact time by different elastic modulus and the relationship between higher harmonic amplitude and contact time. By theoretical analysis and calculation, we obtain the law of characterizing the sample surface elastic difference with the higher harmonic amplitude. Moreover, we obtain the experimental result consistent with the theory, on our homemade higher harmonic system.
-
Keywords:
- tapping-mode atomic fore microscope /
- contact time /
- higher harmonic amplitude /
- elastic modulus
[1] Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930
[2] Stephen A J, Houston J E 1990 Rev. SciInstrum. 62 710
[3] Maivald P, Butt H J, Gould S A C, Prater C B, Drake B, Gurley J A, Elings V B, Hansma P K 1991 Nanotechnology 2 103
[4] Heuberger M, Dietler G, Schlapbach L 1994 Nanotechnology 5 12
[5] Yamanaka K, Ogiso H, Kosolov O 1994 Appl. Phys. Lett. 64 178
[6] Yamanaka K, Nakano S. 1996 Jpn. J. Appl. Phys. 35 3787
[7] Stark R, Heckl W 2000 Surf. Sci. 457 219
[8] Hillenbrand R, Stark M, Guckenberger R 2000 Appl. Phys. Lett. 76 3478
[9] Stark M, Stark R W, Heckl W M, Guckenberger R 2000 Appl. Phys. Lett. 77 3293
[10] Sahin O, Atalar A 2001 Appl. Phys. Lett. 79 4455
[11] Tamayo J, Garcia R 1996 Langmuir 12 4430
[12] Sahin O, Yaralioglu G, Grow R, Zappe S F, Atalar A, Quate C, Solgaard O 2004 Sens. Actuators. A 114 183
[13] Sahin O, Quate C F, Solgaard O 2004 Phys. Rev. B 69 165416
[14] Jonathan R F, William P K 2009 J. Micromech. Microeng. 19 115008
[15] Maali A, Cohen-Bouhacina T, Jai C, Hurth C, Boisgard R, Aimé J, Mariolle D, Bertin F 2006 J. Appl. Phys. 99 024908
[16] Li H L, Chen Y, Dai L H 2008 Appl. Phys. Lett. 92 151903
[17] Fernando S, Austin M, Chaffey J 2007 J. Phys. D: Appl. Phys. 40 7652
[18] Derjaguin B V, Muller V M, Toporov Y P 1975 J. Colloid. Interface. Sci. 53 314
[19] Li Y, Qian J Q, Li Y Z 2010 Chin. Phys. B 19 050701
[20] Qian J Q, Wang X, Li Y Z, Wang W, Chen Z L, Yang R 2011 ZL201110358206.8 (in Chinese) [钱建强, 王曦, 李英姿, 王伟, 陈注里, 阳睿 2011 中国发明专利 ZL201110358206.8]
-
[1] Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930
[2] Stephen A J, Houston J E 1990 Rev. SciInstrum. 62 710
[3] Maivald P, Butt H J, Gould S A C, Prater C B, Drake B, Gurley J A, Elings V B, Hansma P K 1991 Nanotechnology 2 103
[4] Heuberger M, Dietler G, Schlapbach L 1994 Nanotechnology 5 12
[5] Yamanaka K, Ogiso H, Kosolov O 1994 Appl. Phys. Lett. 64 178
[6] Yamanaka K, Nakano S. 1996 Jpn. J. Appl. Phys. 35 3787
[7] Stark R, Heckl W 2000 Surf. Sci. 457 219
[8] Hillenbrand R, Stark M, Guckenberger R 2000 Appl. Phys. Lett. 76 3478
[9] Stark M, Stark R W, Heckl W M, Guckenberger R 2000 Appl. Phys. Lett. 77 3293
[10] Sahin O, Atalar A 2001 Appl. Phys. Lett. 79 4455
[11] Tamayo J, Garcia R 1996 Langmuir 12 4430
[12] Sahin O, Yaralioglu G, Grow R, Zappe S F, Atalar A, Quate C, Solgaard O 2004 Sens. Actuators. A 114 183
[13] Sahin O, Quate C F, Solgaard O 2004 Phys. Rev. B 69 165416
[14] Jonathan R F, William P K 2009 J. Micromech. Microeng. 19 115008
[15] Maali A, Cohen-Bouhacina T, Jai C, Hurth C, Boisgard R, Aimé J, Mariolle D, Bertin F 2006 J. Appl. Phys. 99 024908
[16] Li H L, Chen Y, Dai L H 2008 Appl. Phys. Lett. 92 151903
[17] Fernando S, Austin M, Chaffey J 2007 J. Phys. D: Appl. Phys. 40 7652
[18] Derjaguin B V, Muller V M, Toporov Y P 1975 J. Colloid. Interface. Sci. 53 314
[19] Li Y, Qian J Q, Li Y Z 2010 Chin. Phys. B 19 050701
[20] Qian J Q, Wang X, Li Y Z, Wang W, Chen Z L, Yang R 2011 ZL201110358206.8 (in Chinese) [钱建强, 王曦, 李英姿, 王伟, 陈注里, 阳睿 2011 中国发明专利 ZL201110358206.8]
Catalog
Metrics
- Abstract views: 6276
- PDF Downloads: 529
- Cited By: 0