Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of cold atmospheric plasma induced electric fields on cell membrane electroporation and related transport functions

HU Xiaochuan ZHANG Yimiao JIN Xinrui XING Renfang ZHANG Rui

Citation:

Effect of cold atmospheric plasma induced electric fields on cell membrane electroporation and related transport functions

HU Xiaochuan, ZHANG Yimiao, JIN Xinrui, XING Renfang, ZHANG Rui
cstr: 32037.14.aps.74.20250080
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Cold atmospheric plasma (CAP) is considered to be a highly promising cancer treatment method, due to its “selective” anti-cancer effect. However, the physical theoretical explanation about this effect and the microscopic interactive mechanisms between CAP and tumors are still lacking. In this work, the CAP-induced electric field-caused electroporation (EP) processes of the cell membrane are modeled based on molecular dynamics. Additionally, the umbrella sampling method is utilized to compute the free energy profile of the intracellular permeation processes of the reactive oxygen species (ROS) through EP-formed pore-like structures at different EP stages. Comparative results are shown as follows. 1) Cancer cell membranes with lower cholesterol components show lower EP-generation threshold and faster EP-formation, and 2) lower free-energy barrier and earlier occurrence of free-energy barrier reduction are shown in all EP stages in cancer cell membrane. The above results explain the difference between cancer cells and normal cells when affected by CAP. Our work delves into the formation of CAP-induced EP and the transport of ROS through EP-formed pore-like structures, which contributes to a better understanding of the microscopic mechanisms of the “selective” anti-cancer effect of CAP, and provides important references for developing CAP-based cancer treatment methods, and devices, thereby facilitating the translation of CAP into clinical applications.
      Corresponding author: ZHANG Rui, pczhangrui@163.com
    • Funds: Project supported by the Key Research and Development Program of Shaanxi Province, China (Grant No. 2024SF-YBXM-386) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2023-JC-YB-004).
    [1]

    卢新培, 罗婧怡, 聂兰兰, 刘大伟, 张冠军, 刘定新, 邵涛, 方志, 金珊珊, 赵亚军, 张远涛, 邹亮, 王晓龙, 李和平, 张宇, 刘东平, 杨德正, 陈支通, 黄青, 程诚, 吴淑群, 刘巧珏, 裴学凯, 闫旭, 程鹤, 熊青, 石琦, 宋珂, 曹颖光, 陈宏翔, 冯爱平, 夏育民, 白帆, 杨春俊, 杨润功, 何光源 2024 高电压技术 50 3555

    Lu X P, Luo J Y, Nie L L, Liu D W, Zhang G J, Liu D X, Shao T, Fang Z, Jin S S, Zhao Y J, Zhang Y T, Zou L, Wang X L, Li H P, Zhang Y, Liu D P, Yang D Z, Chen Z T, Huang Q, Chen C, Wu S Q, Liu Q J, Pei X K, Yan X, Cheng H, Xiong Q, Shi Q, Song K, Cao Y G, Chen H X, Feng A P, Xia Y M, Bai F, Yang C J, Yang R G, He G Y 2024 High Voltage Eng. 50 3555

    [2]

    Chen X, Wang X Q, Zhang B X, Yuan M, Yang S Z 2023 Chin. Phys. B 32 115201Google Scholar

    [3]

    Fang J L, Zhang Y R, Lu C Z, Gu L L, Xu S F, Guo Y, Shi J J 2024 Chin. Phys. B 33 015201Google Scholar

    [4]

    Xu H M, Gao J G, Jia P Y, Ran J X, Chen J Y, Li J M 2024 Chin. Phys. B 33 015205Google Scholar

    [5]

    Schleusser S, Schulz L, Song J, Deichmann H, Griesmann A C, Stang F H, Mailaender P, Kraemer R, Kleemann M, Kisch T 2022 Microcirculation 29 e12754Google Scholar

    [6]

    Filipic A, Gutierrez-Aguirre I, Primc G, Mozetic M, Dobnik D 2020 Trends Biotechnol. 38 1278Google Scholar

    [7]

    Nguyen L, Lu P, Boehm D, Bourke P, Gilmore B F, Hickok N J, Freeman T A 2019 Biol. Chem. 400 77Google Scholar

    [8]

    Zhou R W, Zhang X H, Zong Z C, Li J X, Yang Z B, Liu D P, Yang S Z 2015 Chin. Phys. B 24 085201Google Scholar

    [9]

    Borges A C, Kostov K G, Pessoa R S, de Abreu G M A, Lima G d M G, Figueira L W, Koga-Ito C Y 2021 Appl. Sci. 11 1975Google Scholar

    [10]

    von Woedtke T, Laroussi M, Gherardi M 2022 Plasma Sources Sci. Technol. 31 054002Google Scholar

    [11]

    Min T, Xie X, Ren K, Sun T, Wang H, Dang C, Zhang H 2022 Front. Med. 9 884887Google Scholar

    [12]

    Yan D, Horkowitz A, Wang Q, Keidar M 2021 Plasma Processes Polym. 18 e2100020Google Scholar

    [13]

    Yan D, Sherman J H, Keidar M 2017 Oncotarget 8 15977Google Scholar

    [14]

    姚陈果 2018 高电压技术 44 248

    Yao C G 2018 High Voltage Eng. 44 248

    [15]

    Graves D B 2012 J. Phys. D: Appl. Phys. 45 263001Google Scholar

    [16]

    Haberl S, Miklavcic D, Sersa G, Frey W, Rubinsky B 2013 IEEE Electr. Insul. Mag. 29 29Google Scholar

    [17]

    Ruzgys P, Novickij V, Novickij J, Satkauskas S 2019 Bioelectrochemistry 127 87Google Scholar

    [18]

    Wu E, Nie L, Liu D, Lu X, Ostrikov K 2023 Free Radical Biol. Med. 198 109Google Scholar

    [19]

    Szlasa W, Kielbik A, Szewczyk A, Rembialkowska N, Novickij V, Tarek M, Saczko J, Kulbacka J 2021 Molecules 26 154Google Scholar

    [20]

    孙远昆, 郭良浩, 王凯程, 王少萌, 宫玉彬 2021 70 248701Google Scholar

    Sun Y K, Guo L H, Wang K C, Wang S M, Gong Y B 2021 Acta Phys. Sin. 70 248701Google Scholar

    [21]

    邢人芳, 陈明, 李芮羽, 李淑倩, 张瑞, 胡笑钏 2024 73 188703Google Scholar

    Xing R F, Chen M, Li R Y, Li S Q, Zhang R, Hu X C 2024 Acta Phys. Sin. 73 188703Google Scholar

    [22]

    Hu X, Jin X, Xing R, Liu Y, Feng Y, Lyu Y, Zhang R 2023 Results Phys. 51 106621Google Scholar

    [23]

    Yang S, Zhao T, Zou L, Wang X, Zhang Y 2019 Phys. Plasmas 26 083504Google Scholar

    [24]

    Zhao X, Ding W, Wang H, Wang Y, Liu Y, Li Y, Liu C 2023 J. Chem. Phys. 159 045101Google Scholar

    [25]

    Bera I, Payghan P V 2019 Curr. Pharm. Des. 25 3339Google Scholar

    [26]

    Arbeitman C R, Rojas P, Ojeda-May P, Garcia M E 2021 Nat. Commun. 12 5407Google Scholar

    [27]

    Semmler M L, Bekeschus S, Schäfer M, Bernhardt T, Fischer T, Witzke K, Seebauer C, Rebl H, Grambow E, Vollmar B, Nebe J B, Metelmann H-R, Woedtke T v, Emmert S, Boeckmann L 2020 Cancers 12 269Google Scholar

    [28]

    Van der Paal J, Neyts E C, Verlackt C C W, Bogaerts A 2016 Chem. Sci. 7 489Google Scholar

    [29]

    Guo F, Zhou J, Wang J, Qian K, Qu H 2023 Phys. Chem. Chem. Phys. 25 14096Google Scholar

    [30]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101Google Scholar

    [31]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [32]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [33]

    Nose S 1984 Mol. Phys. 52 255Google Scholar

    [34]

    Hess B, Bekker H, Berendsen H J C, Fraaije J 1997 J. Comput. Chem. 18 1463Google Scholar

    [35]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089Google Scholar

    [36]

    Yusupov M, Van der Paal J, Neyts E C, Bogaerts A 2017 BBA-Gen. Subjects 1861 839Google Scholar

    [37]

    Hu Q, Joshi R P, Schoenbach K H 2005 Phys. Rev. E 72 031902Google Scholar

    [38]

    Hu Q, Viswanadham S, Joshi R P, Schoenbach K H, Beebe S J, Blackmore P F 2005 Phys. Rev. E 71 031914Google Scholar

    [39]

    Schmid N, Eichenberger A P, Choutko A, Riniker S, Winger M, Mark A E, van Gunsteren W F 2011 Eur. Biophys. J. Biophys. 40 843Google Scholar

    [40]

    Cordeiro R M, Yusupov M, Razzokov J, Bogaerts A 2020 J. Phys. Chem. B 124 1082Google Scholar

    [41]

    Neto A J P, Cordeiro R M 2016 BBA-Biomembranes 1858 2191Google Scholar

    [42]

    Razzokov J, Yusupov M, Cordeiro R M, Bogaerts A 2018 J. Phys. D: Appl. Phys. 51 365203Google Scholar

    [43]

    Wu S Q, Dong X, Pei X K, Yue Y F, Lu X P 2017 Trans. Chin. Electrotech. Soc. 32 82 (in Chinse) [吴淑群, 董熙, 裴学凯, 岳远富, 卢新培 2017 电工技术学报 32 82]

    Wu S Q, Dong X, Pei X K, Yue Y F, Lu X P 2017 Trans. Chin. Electrotech. Soc. 32 82 (in Chinse)

    [44]

    Nakagawa Y, Ono R, Oda T 2011 J. Appl. Phys. 110 073304Google Scholar

    [45]

    Verreycken T, van der Horst R M, Baede A H F M, Van Veldhuizen E M, Bruggeman P J 2012 J. Phys. D: Appl. Phys. 45 045205Google Scholar

    [46]

    Vermeylen S, Waele J D, Vanuytsel S, Backer J D, Van de Paal J, Ramakers M, Leyssens K, Marcq E, Van Audenaerde J, Smiths E L J, Dewilde S, Bogaerts A 2016 Plasma Processes Polym. 13 1195Google Scholar

    [47]

    Kim S J, Seong M J, Mun J J, Bae J H, Joh H M, Chung T H 2022 Int. J. Mol. Sci. 23 14092Google Scholar

    [48]

    Geboers B, Scheffer H J, Graybill P M, Ruarus A H, Nieuwenhuizen S, Puijk R S, van den Tol P M, Davalos R V, Rubinsky B, de Gruijl T D, Miklavcic D, Meijerink M R 2020 Radiology 295 254Google Scholar

    [49]

    Jiang C L, Davalos R V, Bischof J C 2015 IEEE Trans. Biomed. Eng. 62 4Google Scholar

  • 图 1  (a) POPC和胆固醇分子结构; (b) 细胞膜模型示意图. I为液体相, II为POPC头部基团区域, III为POPC尾部区域

    Figure 1.  (a) Structural components of POPC and cholesterol; (b) schematic diagram of the cell membrane model. I, II, and III represent the liquid phase, the region of POPC head groups and tail groups, respectively.

    图 2  不同模型的细胞膜密度分布图, 黑色虚线表示两个POPC层的位置 (a)模型1; (b)模型2; (c)模型3

    Figure 2.  Density distribution of different cell membrane models: (a) Model 1; (b) Model 2; (c) Model 3. The black dashed lines demarcate the interfacial boundaries of the two POPC molecular layers.

    图 3  伞状采样法示意图. 红色虚线表示采样窗口所处的位置

    Figure 3.  Schematic diagram of umbrella sampling method. The dotted red line indicates the location of the sampling window.

    图 4  不同电场强度下细胞膜EP过程示意图. 黑色方框指示出了水突起、水桥和水通道的位置

    Figure 4.  Schematic diagram of EP processes in cell membrane under different electric field intensities. The black box indicates the location of the water bump, water bridge, and water channel.

    图 5  EP进展过程中细胞膜 (a)水分子和(b) POPC分子的z轴总偶极矩. A, B, C分别表示图4中EP的三个阶段, 1 debye =3.335×10–30 C·m

    Figure 5.  Mean z-axis dipole moment of (a) water molecules and (b) POPC molecules during EP progression. A, B, and C represents the three stages of EP in Figure 4, respectively. 1 debye =3.335×10–30 C·m.

    图 6  细胞膜形成EP的时间与电场强度的关系. 括号内分数为: (模拟时间内发生EP的次数)/(总模拟次数)

    Figure 6.  Relationship between EP formation time and electric field intensity in cell membrane. The score inside the brackets is: (Number of EP occurrences in the simulation time)/(total number of simulations).

    图 7  模型1中ROS在EP不同阶段转运的FEP (a)原生细胞膜构象及EP形成过程中的三个阶段构象; (b) H2O2, (c) HO2和(d) OH的FEP

    Figure 7.  FEP of ROS transport at different stages of EP in Model 1: (a) The conformation of the native cell membrane and the three-stage conformations during the formation of EP; FEP of (b) H2O2, (c) HO2, and (d) OH.

    图 8  模型2中ROS在EP不同阶段转运的FEP (a)原生细胞膜构象及EP形成过程中的三个阶段构象; (b) H2O2, (c) HO2和(d) OH的FEP

    Figure 8.  FEP of ROS transport at different stages of EP in Model 2: (a) The conformation of the native cell membrane and the three-stage conformations during the formation of EP; FEP of (b) H2O2, (c) HO2, and (d) OH.

    图 9  模型3中ROS在EP不同阶段转运的FEP (a) 原生细胞膜构象及EP形成过程中的三个阶段构象; (b) H2O2, (c) HO2和(d) OH的FEP

    Figure 9.  FEP of ROS transport at different stages of EP in Model 3: (a) The conformation of the native cell membrane and the three-stage conformations during the formation of EP; FEP of (b) H2O2, (c) HO2, and (d) OH.

    表 1  不同胆固醇含量的细胞膜模型参数

    Table 1.  Cell membrane model parameters with different cholesterol content.

    序号POPC数量胆固醇数量胆固醇含量/%水分子数X/nmY/nmZ/nm
    模型11280048736.036.039.07
    模型21121612.547055.945.948.25
    模型31022620.345135.785.788.39
    DownLoad: CSV
    Baidu
  • [1]

    卢新培, 罗婧怡, 聂兰兰, 刘大伟, 张冠军, 刘定新, 邵涛, 方志, 金珊珊, 赵亚军, 张远涛, 邹亮, 王晓龙, 李和平, 张宇, 刘东平, 杨德正, 陈支通, 黄青, 程诚, 吴淑群, 刘巧珏, 裴学凯, 闫旭, 程鹤, 熊青, 石琦, 宋珂, 曹颖光, 陈宏翔, 冯爱平, 夏育民, 白帆, 杨春俊, 杨润功, 何光源 2024 高电压技术 50 3555

    Lu X P, Luo J Y, Nie L L, Liu D W, Zhang G J, Liu D X, Shao T, Fang Z, Jin S S, Zhao Y J, Zhang Y T, Zou L, Wang X L, Li H P, Zhang Y, Liu D P, Yang D Z, Chen Z T, Huang Q, Chen C, Wu S Q, Liu Q J, Pei X K, Yan X, Cheng H, Xiong Q, Shi Q, Song K, Cao Y G, Chen H X, Feng A P, Xia Y M, Bai F, Yang C J, Yang R G, He G Y 2024 High Voltage Eng. 50 3555

    [2]

    Chen X, Wang X Q, Zhang B X, Yuan M, Yang S Z 2023 Chin. Phys. B 32 115201Google Scholar

    [3]

    Fang J L, Zhang Y R, Lu C Z, Gu L L, Xu S F, Guo Y, Shi J J 2024 Chin. Phys. B 33 015201Google Scholar

    [4]

    Xu H M, Gao J G, Jia P Y, Ran J X, Chen J Y, Li J M 2024 Chin. Phys. B 33 015205Google Scholar

    [5]

    Schleusser S, Schulz L, Song J, Deichmann H, Griesmann A C, Stang F H, Mailaender P, Kraemer R, Kleemann M, Kisch T 2022 Microcirculation 29 e12754Google Scholar

    [6]

    Filipic A, Gutierrez-Aguirre I, Primc G, Mozetic M, Dobnik D 2020 Trends Biotechnol. 38 1278Google Scholar

    [7]

    Nguyen L, Lu P, Boehm D, Bourke P, Gilmore B F, Hickok N J, Freeman T A 2019 Biol. Chem. 400 77Google Scholar

    [8]

    Zhou R W, Zhang X H, Zong Z C, Li J X, Yang Z B, Liu D P, Yang S Z 2015 Chin. Phys. B 24 085201Google Scholar

    [9]

    Borges A C, Kostov K G, Pessoa R S, de Abreu G M A, Lima G d M G, Figueira L W, Koga-Ito C Y 2021 Appl. Sci. 11 1975Google Scholar

    [10]

    von Woedtke T, Laroussi M, Gherardi M 2022 Plasma Sources Sci. Technol. 31 054002Google Scholar

    [11]

    Min T, Xie X, Ren K, Sun T, Wang H, Dang C, Zhang H 2022 Front. Med. 9 884887Google Scholar

    [12]

    Yan D, Horkowitz A, Wang Q, Keidar M 2021 Plasma Processes Polym. 18 e2100020Google Scholar

    [13]

    Yan D, Sherman J H, Keidar M 2017 Oncotarget 8 15977Google Scholar

    [14]

    姚陈果 2018 高电压技术 44 248

    Yao C G 2018 High Voltage Eng. 44 248

    [15]

    Graves D B 2012 J. Phys. D: Appl. Phys. 45 263001Google Scholar

    [16]

    Haberl S, Miklavcic D, Sersa G, Frey W, Rubinsky B 2013 IEEE Electr. Insul. Mag. 29 29Google Scholar

    [17]

    Ruzgys P, Novickij V, Novickij J, Satkauskas S 2019 Bioelectrochemistry 127 87Google Scholar

    [18]

    Wu E, Nie L, Liu D, Lu X, Ostrikov K 2023 Free Radical Biol. Med. 198 109Google Scholar

    [19]

    Szlasa W, Kielbik A, Szewczyk A, Rembialkowska N, Novickij V, Tarek M, Saczko J, Kulbacka J 2021 Molecules 26 154Google Scholar

    [20]

    孙远昆, 郭良浩, 王凯程, 王少萌, 宫玉彬 2021 70 248701Google Scholar

    Sun Y K, Guo L H, Wang K C, Wang S M, Gong Y B 2021 Acta Phys. Sin. 70 248701Google Scholar

    [21]

    邢人芳, 陈明, 李芮羽, 李淑倩, 张瑞, 胡笑钏 2024 73 188703Google Scholar

    Xing R F, Chen M, Li R Y, Li S Q, Zhang R, Hu X C 2024 Acta Phys. Sin. 73 188703Google Scholar

    [22]

    Hu X, Jin X, Xing R, Liu Y, Feng Y, Lyu Y, Zhang R 2023 Results Phys. 51 106621Google Scholar

    [23]

    Yang S, Zhao T, Zou L, Wang X, Zhang Y 2019 Phys. Plasmas 26 083504Google Scholar

    [24]

    Zhao X, Ding W, Wang H, Wang Y, Liu Y, Li Y, Liu C 2023 J. Chem. Phys. 159 045101Google Scholar

    [25]

    Bera I, Payghan P V 2019 Curr. Pharm. Des. 25 3339Google Scholar

    [26]

    Arbeitman C R, Rojas P, Ojeda-May P, Garcia M E 2021 Nat. Commun. 12 5407Google Scholar

    [27]

    Semmler M L, Bekeschus S, Schäfer M, Bernhardt T, Fischer T, Witzke K, Seebauer C, Rebl H, Grambow E, Vollmar B, Nebe J B, Metelmann H-R, Woedtke T v, Emmert S, Boeckmann L 2020 Cancers 12 269Google Scholar

    [28]

    Van der Paal J, Neyts E C, Verlackt C C W, Bogaerts A 2016 Chem. Sci. 7 489Google Scholar

    [29]

    Guo F, Zhou J, Wang J, Qian K, Qu H 2023 Phys. Chem. Chem. Phys. 25 14096Google Scholar

    [30]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101Google Scholar

    [31]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [32]

    Hoover W G 1985 Phys. Rev. A 31 1695Google Scholar

    [33]

    Nose S 1984 Mol. Phys. 52 255Google Scholar

    [34]

    Hess B, Bekker H, Berendsen H J C, Fraaije J 1997 J. Comput. Chem. 18 1463Google Scholar

    [35]

    Darden T, York D, Pedersen L 1993 J. Chem. Phys. 98 10089Google Scholar

    [36]

    Yusupov M, Van der Paal J, Neyts E C, Bogaerts A 2017 BBA-Gen. Subjects 1861 839Google Scholar

    [37]

    Hu Q, Joshi R P, Schoenbach K H 2005 Phys. Rev. E 72 031902Google Scholar

    [38]

    Hu Q, Viswanadham S, Joshi R P, Schoenbach K H, Beebe S J, Blackmore P F 2005 Phys. Rev. E 71 031914Google Scholar

    [39]

    Schmid N, Eichenberger A P, Choutko A, Riniker S, Winger M, Mark A E, van Gunsteren W F 2011 Eur. Biophys. J. Biophys. 40 843Google Scholar

    [40]

    Cordeiro R M, Yusupov M, Razzokov J, Bogaerts A 2020 J. Phys. Chem. B 124 1082Google Scholar

    [41]

    Neto A J P, Cordeiro R M 2016 BBA-Biomembranes 1858 2191Google Scholar

    [42]

    Razzokov J, Yusupov M, Cordeiro R M, Bogaerts A 2018 J. Phys. D: Appl. Phys. 51 365203Google Scholar

    [43]

    Wu S Q, Dong X, Pei X K, Yue Y F, Lu X P 2017 Trans. Chin. Electrotech. Soc. 32 82 (in Chinse) [吴淑群, 董熙, 裴学凯, 岳远富, 卢新培 2017 电工技术学报 32 82]

    Wu S Q, Dong X, Pei X K, Yue Y F, Lu X P 2017 Trans. Chin. Electrotech. Soc. 32 82 (in Chinse)

    [44]

    Nakagawa Y, Ono R, Oda T 2011 J. Appl. Phys. 110 073304Google Scholar

    [45]

    Verreycken T, van der Horst R M, Baede A H F M, Van Veldhuizen E M, Bruggeman P J 2012 J. Phys. D: Appl. Phys. 45 045205Google Scholar

    [46]

    Vermeylen S, Waele J D, Vanuytsel S, Backer J D, Van de Paal J, Ramakers M, Leyssens K, Marcq E, Van Audenaerde J, Smiths E L J, Dewilde S, Bogaerts A 2016 Plasma Processes Polym. 13 1195Google Scholar

    [47]

    Kim S J, Seong M J, Mun J J, Bae J H, Joh H M, Chung T H 2022 Int. J. Mol. Sci. 23 14092Google Scholar

    [48]

    Geboers B, Scheffer H J, Graybill P M, Ruarus A H, Nieuwenhuizen S, Puijk R S, van den Tol P M, Davalos R V, Rubinsky B, de Gruijl T D, Miklavcic D, Meijerink M R 2020 Radiology 295 254Google Scholar

    [49]

    Jiang C L, Davalos R V, Bischof J C 2015 IEEE Trans. Biomed. Eng. 62 4Google Scholar

  • [1] Xing Ren-Fang, Chen Ming, Li Rui-Yu, Li Shu-Qian, Zhang Rui, Hu Xiao-Chuan. Effect of alternating electric field induced by cold atmospheric plasma on conformation and function of interleukin-6. Acta Physica Sinica, 2024, 73(18): 188703. doi: 10.7498/aps.73.20240927
    [2] Zhang Hong, Guo Hong-Xia, Pan Xiao-Yu, Lei Zhi-Feng, Zhang Feng-Qi, Gu Zhao-Qiao, Liu Yi-Tian, Ju An-An, Ouyang Xiao-Ping. Transport process and energy loss of heavy ions in silicon carbide. Acta Physica Sinica, 2021, 70(16): 162401. doi: 10.7498/aps.70.20210503
    [3] Zhu Qi, Wang Sheng-Tao, Zhao Fu-Qi, Pan Hao. Effect of stacking fault tetrahedron on spallation of irradiated Cu via molecular dynamics study. Acta Physica Sinica, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [4] Yin Yue-Hong, Xu Hong-Ping. Theoretical study on the hydrogen storage properties of (MgO)4 under external electric field. Acta Physica Sinica, 2019, 68(16): 163601. doi: 10.7498/aps.68.20190544
    [5] Deng Yong-He, Wen Da-Dong, Peng Chao, Wei Yan-Ding, Zhao Rui, Peng Ping. Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys. Acta Physica Sinica, 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [6] Liu Jun-Juan, Wei Zeng-Jiang, Chang Hong, Zhang Ya-Lin, Di Bing. Dynamics of polarons in organic conjugated polymers with impurity ions. Acta Physica Sinica, 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [7] Yin Yue-Hong, Chen Hong-Shan, Song Yan. The electric field effect on the hydrogen storage of (MgO)12 by ab intio calculations. Acta Physica Sinica, 2015, 64(19): 193601. doi: 10.7498/aps.64.193601
    [8] Yang Cheng-Bing, Xie Hui, Liu Chao. Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube. Acta Physica Sinica, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [9] Ling Zhi-Gang, Tang Yan-Lin, Li Tao, Li Yu-Peng, Wei Xiao-Nan. Molecular structure and properties of zirconiumdioxide under the external electric field. Acta Physica Sinica, 2014, 63(2): 023102. doi: 10.7498/aps.63.023102
    [10] Wang Jian-Wei, Song Yi-Xu, Ren Tian-Ling, Li Jin-Chun, Chu Guo-Liang. Molecular dynamics simulation of Lag effect in fluorine plasma etching Si. Acta Physica Sinica, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [11] Ling Zhi-Gang, Tang Yan-Lin, Li Tao, Li Yu-Peng, Wei Xiao-Nan. Molecular structure and electronic spectrum of 2, 2, 5, 5-tetrachlorobiphenyl under the extenal electric field. Acta Physica Sinica, 2013, 62(22): 223102. doi: 10.7498/aps.62.223102
    [12] Gao Yan, Chen Rui-Yun, Wu Rui-Xiang, Zhang Guo-Feng, Xiao Lian-Tuan, Jia Suo-Tang. Electric field induced polarization dynamics of graphene oxide. Acta Physica Sinica, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [13] Zuo Ying-Hong, Wang Jian-Guo, Zhu Jin-Hui, Niu Sheng-Li, Fan Ru-Yu. Investigation of the cathode electric field at the initial stage of explosive electron emission. Acta Physica Sinica, 2012, 61(17): 177901. doi: 10.7498/aps.61.177901
    [14] Shen Zhuang-Zhi, Wu Sheng-Ju. Dynamic behavior of a cavitation bubble in acoustic field and electric field. Acta Physica Sinica, 2012, 61(12): 124301. doi: 10.7498/aps.61.124301
    [15] Fan Qin-Na, Li Wei, Zhang Lin. Molecular dynamics study of relaxation and local structure changes in a rapidly quenched molten Cu57 cluster. Acta Physica Sinica, 2010, 59(4): 2428-2433. doi: 10.7498/aps.59.2428
    [16] Qin Xiao-Gang, He De-Yan, Wang Ji. Geant 4-based calculation of electric field in deep dielectric charging. Acta Physica Sinica, 2009, 58(1): 684-689. doi: 10.7498/aps.58.684
    [17] Chen Min, Wang Jun, Hou Qing. Influence of helium on volume change and stability of titanium structure: An atomistic simulation. Acta Physica Sinica, 2009, 58(2): 1149-1153. doi: 10.7498/aps.58.1149
    [18] Ruan Wen, Luo Wen-Lang, Zhang Li, Zhu Zheng-He. Molecular structure and electronic spectrum of styrene under the external electric field. Acta Physica Sinica, 2008, 57(10): 6207-6212. doi: 10.7498/aps.57.6207
    [19] Deng Chuang, Weng Yu-Min, Xu Zhi-Zhong, Fei Lun. Properties of solitons stimulated by electric field in collagen molecule. Acta Physica Sinica, 2005, 54(5): 2429-2434. doi: 10.7498/aps.54.2429
    [20] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
Metrics
  • Abstract views:  338
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  17 January 2025
  • Accepted Date:  28 March 2025
  • Available Online:  10 April 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map