搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷大气压等离子体诱导的交变电场对白细胞介素-6结构及功能的影响

邢人芳 陈明 李芮羽 李淑倩 张瑞 胡笑钏

引用本文:
Citation:

冷大气压等离子体诱导的交变电场对白细胞介素-6结构及功能的影响

邢人芳, 陈明, 李芮羽, 李淑倩, 张瑞, 胡笑钏

Effect of alternating electric field induced by cold atmospheric plasma on conformation and function of interleukin-6

Xing Ren-Fang, Chen Ming, Li Rui-Yu, Li Shu-Qian, Zhang Rui, Hu Xiao-Chuan
cstr: 32037.14.aps.73.20240927
PDF
HTML
导出引用
  • 冷大气压等离子体(cold atmospheric plasma, CAP)由于其具有“选择性”杀伤癌细胞的效果, 而被认为是一种极具潜力的癌症治疗手段. CAP可以通过降低关键炎症因子白细胞介素-6 (interleukin-6, IL-6)的表达, 抑制肿瘤炎症反应并激活免疫系统. 然而CAP携带的强交变电场对IL-6构象及功能的影响仍缺乏了解. 本文采用分子动力学方法, 模拟了不同频率及强度的交变电场对IL-6构象及其与受体对接过程的影响. 结果表明, 当电场频率小于30 MHz且电场强度大于0.5 V/nm时, IL-6的平均偶极矩增大, 长螺旋间维持稳定的盐桥断裂, α螺旋数量减少, 从而影响了IL-6与其受体的结合, 对其发挥正常生物效应机制产生潜在影响. 本文从微观层面上解释了CAP诱导的电场通过IL-6影响相关生物学效应的内部相互作用机制, 并为实际应用CAP治疗肿瘤炎症的参数选取、探索有效的癌症治疗策略提供重要的理论依据.
    Cold atmospheric plasma (CAP) is considered to be a very promising cancer treatment method due to its “selective” killing effect on cancer cells. The CAP can inhibit tumor inflammatory responses and activate the immune system by reducing the expression of the key inflammatory factor Interleukin-6 (IL-6). However, the influence of the strong alternating electric field induced by CAP on the conformation and function of IL-6 remains unclear. In this study molecular dynamics simulation is used to investigate the effects of alternating electric fields with different frequencies and intensities on the conformation of IL-6. We statistically analyze the root mean square fluctuations, root mean square deviation, secondary structural alterations, and dipole moment changes of IL-6 under different electric field parameters. Furthermore, molecular docking is utilized to assess the influence on the receptor-binding process. The results show that when the electric field frequency is below 30 MHz and the intensity exceeds 0.5 V/nm, the average dipole moment of IL-6 increases, leading to changes in the rigid regions at the C-terminus which maintain structural stability. Specifically, the salt bridges that stabilize the long helices rupture, and the number of α-helices decreases. The docking outcomes reveal that the distance between the key binding residues of the conformationally altered IL-6 and its receptor increases, thereby disrupting the normal binding process and potentially impairing its normal biological functionality. This study explains the internal interaction mechanism of CAP-induced electric fields affecting IL-6-related biological effects at the micro level, and provides important theoretical basis for optimizing parameters in the practical application of CAP in tumor inflammation treatment and the development of effective cancer therapy strategies.
      通信作者: 胡笑钏, huxc@chd.edu.cn
    • 基金项目: 中国博士后科学基金(批准号: 2021M702629)、陕西省重点研发计划(批准号: 2024SF-YBXM-386) 、陕西省自然科学基础研究计划 (批准号: 2023-JC-YB-004)和西安市科技计划项目科学家+工程师队伍建设项目(批准号: 24KGDW0023)资助的课题.
      Corresponding author: Hu Xiao-Chuan, huxc@chd.edu.cn
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2021M702629), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2024SF-YBXM-386), the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2023-JC-YB-004), and the Scientists + Engineers Team Construction Project of Xi’an, China (Grant No. 24KGDW0023).
    [1]

    Yan D, Sherman J H, Keidar M 2017 Oncotarget 8 15977Google Scholar

    [2]

    Graves D B 2014 Phys. Plasmas 21 080901Google Scholar

    [3]

    Limanowski R, Yan D, Li L, Keidar M 2022 Cancers (Basel) 14 3461Google Scholar

    [4]

    Dubuc A, Monsarrat P, Virard F, et al. 2018 Ther. Adv. Med. Oncol. 10 1Google Scholar

    [5]

    张浩, 张基珅, 许德晖, 刘定新, 荣命哲 2023 电工技术学报 38 231Google Scholar

    Zhang H, Zhang J K, Xu D H, Liu D X, Rong M Z 2023 Trans. China Electrotech. Soc. 38 231Google Scholar

    [6]

    Dai X, Wu J, Lu L, Chen Y 2023 Biomolecules & Therapeutics 31 496Google Scholar

    [7]

    胡笑钏, 张晓伟, 刘样溪, 周古翔, 吕毅 2022 中国肝胆外科杂志 28 6Google Scholar

    Hu X C, Zhang X W, Liu Y X, Zhou G X, Lü Y 2022 Chin. J. Hepatobil. Surg. 28 6Google Scholar

    [8]

    Li Y, Tang T Y, Lee H J, Song K 2021 Int. J. Mol. Sci. 22 3956Google Scholar

    [9]

    Dejonckheere C S, Torres-Crigna A, Layer J P, et al. 2022 Pharmaceutics 14 1767Google Scholar

    [10]

    Schuster M, Seebauer C, Rutkowski R, et al. 2016 J. Craniomaxillofac. Surg. 44 1445Google Scholar

    [11]

    Hirasawa I, Odagiri H, Park G, Sanghavi R, Oshita T, Togi A, Yoshikawa K, Mizutani K, Takeuchi Y, Kobayashi H, Katagiri S, Iwata T, Aoki A 2023 Plos One 18 e0292267Google Scholar

    [12]

    Yusupov M, Van der Paal J, Neyts E C, Bogaerts A 2017 Bba-Gen Subjects 1861 839Google Scholar

    [13]

    Jin X R, Hu X C, Chen J Y, Shan L Q, Hao D J, Zhang R 2024 J. Biomol. Struct. Dyn. DOI: 10.1080/07391102.2024.2329288

    [14]

    Negi M, Kaushik N, Lamichhane P, Jaiswal A, Borkar S B, Patel P, Singh P, Ha Choi E, Kaushik N K 2024 J. Hazard. Mater. 472 134562Google Scholar

    [15]

    Song M H, Tang Y, Cao K M, Qi L, Xie K P 2024 Front. Endocrinol. 15 1408312Google Scholar

    [16]

    Zhao H K, Wu L, Yan G F, Chen Y, Zhou M Y, Wu Y Z, Li Y S 2021 Signal. Transduct. Tar. 6 263Google Scholar

    [17]

    Wolf J, Rose-John S, Garbers C 2014 Cytokine 70 11Google Scholar

    [18]

    Akbari Z, Saadati F, Mahdikia H, Freund E, Abbasvandi F, Shokri B, Zali H, Bekeschus S 2021 Appl. Sci. 11 4527Google Scholar

    [19]

    Fu L, Fung F K, Lo A C, Chan Y K, So K F, Wong I Y, Shih K C, Lai J S 2018 Transl. Vis. Sci. Technol. 7 7Google Scholar

    [20]

    覃建锋, 宋海旺, 孙宝飞, 吉杨丹, 龙思方, 杨丹 2024 解剖学报 55 260Google Scholar

    Tan J F, Song H W, Sun B F, Ji Y D, Long S F, Yang D 2024 Acta Anatom. Sin 55 260Google Scholar

    [21]

    Filipe H A L, Loura L M S 2022 Molecules 27 2105Google Scholar

    [22]

    Wu X, Xu L Y, Li E M, Dong G 2022 Chem. Biol. Drug. Des. 99 789Google Scholar

    [23]

    孙远昆, 郭良浩, 王凯程, 王少萌, 宫玉彬 2021 70 248701Google Scholar

    Sun Y K, Guo L H, Wang K C, Wang S M, Gong Y B 2021 Acta Phys. Sin. 70 248701Google Scholar

    [24]

    Zhang Q, Shao D Q, Xu P, Jiang Z T 2022 Polymers-Basel 14 123Google Scholar

    [25]

    Fallah Z, Jamali Y, Rafii-Tabar H 2016 Plos One 11 e0166412Google Scholar

    [26]

    Hu X, Jin X, Xing R, Liu Y, Feng Y, Lyu Y, Zhang R 2023 Results in Physics 51 106621Google Scholar

    [27]

    周晗, 耿轶钊, 晏世伟 2024 73 048701Google Scholar

    Zhou H, Geng Y, Yan S 2024 Acta Phys. Sin. 73 048701Google Scholar

    [28]

    Gupta M, Ha K, Agarwal R, Quarles L D, Smith J C 2021 Proteins 89 163Google Scholar

    [29]

    Schillinger O, Panwalkar V, Strodel B, Dingley A J 2017 J. Phys. Chem. B 121 8113Google Scholar

    [30]

    Arisi M, Soglia S, Pisani E G, et al. 2021 Dermatology Ther. 11 855Google Scholar

    [31]

    Uchida G, Ito T, Ikeda J, Suzuki T, Takenaka K, Setsuhara Y 2018 Jpn. J. Appl. Phys. 57 096201Google Scholar

    [32]

    Lin A, Truong B, Patel S, Kaushik N, Choi E H, Fridman G, Fridman A, Miller V 2017 Int. J. Mol. Sci. 18 966Google Scholar

    [33]

    Hu Q, Joshi R P, Schoenbach K H 2005 Phys. Rev. E 72 031902Google Scholar

    [34]

    Pronk S, Páll S, Schulz R, et al. 2013 Bioinformatics 29 845Google Scholar

    [35]

    Huang J, MacKerell A D 2013 J. Comput. Chem. 34 2135Google Scholar

    [36]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101Google Scholar

    [37]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [38]

    Cheng T M, Blundell T L, Fernandez-Recio J 2007 Proteins 68 503Google Scholar

    [39]

    Biggin P C, Smith G R, Shrivastava I, Choe S, Sansom M S 2001 Biochim. Biophys. Acta 1510 1Google Scholar

    [40]

    Urabe G, Katagiri T, Katsuki S 2020 Bioelectricity 2 33Google Scholar

    [41]

    赵伟, 杨瑞金, 张文斌, 华霄, 唐亚丽 2011 食品科学 32 91Google Scholar

    Zhao W, Yang R J, Zhang W B, Hua X, Tang Y L 2011 Food Sci. 32 91Google Scholar

    [42]

    Leebeek F W, Kariya K, Schwabe M, Fowlkes D M 1992 J. Biol. Chem. 267 14832Google Scholar

    [43]

    Fontaine V, Savino R, Arcone R, de Wit L, Brakenhoff J P, Content J, Ciliberto G 1993 Eur. J. Biochem. 211 749Google Scholar

    [44]

    Yang Z H, Xiao A, Liu D W, Shi Q, Li Y 2023 Plasma Process Polym. 20 2200242Google Scholar

  • 图 1  (a) IL-6的结构, 青色代表长螺旋, 粉色代表短螺旋; (b) IL-6与受体结合示意图

    Fig. 1.  (a) IL-6 structure, where cyan represents long helix, pink represents short helix; (b) diagram of IL-6 binding to IL-6R.

    图 2  (a) 电场频率及 (b) 电场强度对IL-6的RMSD影响

    Fig. 2.  RMSD of the protein IL-6 at electric field with different (a) frequencies and (b) intensities.

    图 3  (a) 电场频率及 (b) 电场强度对IL-6的RMSF影响

    Fig. 3.  RMSF of the protein IL-6 at electric field with different (a) frequencies and (b) intensities.

    图 4  电场对形成盐桥的残基质心距离的影响

    Fig. 4.  Effect of electric field on the center distance of residual salt bridge.

    图 5  (a) 电场频率及 (b) 电场强度对IL-6C端二级结构总数的影响

    Fig. 5.  Total number of secondary structures of the C-terminal of IL-6 at electric field with different (a) frequencies and (b) intensities.

    图 6  不同强度电场下IL-6二级结构变化

    Fig. 6.  Stride evolution of secondary structures of protein IL-6 at different electric field intensities.

    图 7  不同电场强度下IL-6结构快照

    Fig. 7.  Three-dimensional structures of protein IL-6 at different electric field intensities.

    图 8  (a) 电场频率及 (b) 电场强度对偶极矩的影响

    Fig. 8.  Total dipole moment of the protein IL-6 at electric field with different (a) frequencies and (b) intensities.

    图 9  (a) 无电场与 (b) f = 30 MHz, E = 0.5 V/nm电场作用下, IL-6与其受体结合能力, 其中绿色代表配体IL-6, 黄色代表受体IL-6R α

    Fig. 9.  Effect of electric field on the docking of IL-6 and IL-6R: (a) No electric field; (b) f = 30 MHz, E = 0.5 V/nm. Green, ligand IL-6; yellow, receptor IL-6R α.

    Baidu
  • [1]

    Yan D, Sherman J H, Keidar M 2017 Oncotarget 8 15977Google Scholar

    [2]

    Graves D B 2014 Phys. Plasmas 21 080901Google Scholar

    [3]

    Limanowski R, Yan D, Li L, Keidar M 2022 Cancers (Basel) 14 3461Google Scholar

    [4]

    Dubuc A, Monsarrat P, Virard F, et al. 2018 Ther. Adv. Med. Oncol. 10 1Google Scholar

    [5]

    张浩, 张基珅, 许德晖, 刘定新, 荣命哲 2023 电工技术学报 38 231Google Scholar

    Zhang H, Zhang J K, Xu D H, Liu D X, Rong M Z 2023 Trans. China Electrotech. Soc. 38 231Google Scholar

    [6]

    Dai X, Wu J, Lu L, Chen Y 2023 Biomolecules & Therapeutics 31 496Google Scholar

    [7]

    胡笑钏, 张晓伟, 刘样溪, 周古翔, 吕毅 2022 中国肝胆外科杂志 28 6Google Scholar

    Hu X C, Zhang X W, Liu Y X, Zhou G X, Lü Y 2022 Chin. J. Hepatobil. Surg. 28 6Google Scholar

    [8]

    Li Y, Tang T Y, Lee H J, Song K 2021 Int. J. Mol. Sci. 22 3956Google Scholar

    [9]

    Dejonckheere C S, Torres-Crigna A, Layer J P, et al. 2022 Pharmaceutics 14 1767Google Scholar

    [10]

    Schuster M, Seebauer C, Rutkowski R, et al. 2016 J. Craniomaxillofac. Surg. 44 1445Google Scholar

    [11]

    Hirasawa I, Odagiri H, Park G, Sanghavi R, Oshita T, Togi A, Yoshikawa K, Mizutani K, Takeuchi Y, Kobayashi H, Katagiri S, Iwata T, Aoki A 2023 Plos One 18 e0292267Google Scholar

    [12]

    Yusupov M, Van der Paal J, Neyts E C, Bogaerts A 2017 Bba-Gen Subjects 1861 839Google Scholar

    [13]

    Jin X R, Hu X C, Chen J Y, Shan L Q, Hao D J, Zhang R 2024 J. Biomol. Struct. Dyn. DOI: 10.1080/07391102.2024.2329288

    [14]

    Negi M, Kaushik N, Lamichhane P, Jaiswal A, Borkar S B, Patel P, Singh P, Ha Choi E, Kaushik N K 2024 J. Hazard. Mater. 472 134562Google Scholar

    [15]

    Song M H, Tang Y, Cao K M, Qi L, Xie K P 2024 Front. Endocrinol. 15 1408312Google Scholar

    [16]

    Zhao H K, Wu L, Yan G F, Chen Y, Zhou M Y, Wu Y Z, Li Y S 2021 Signal. Transduct. Tar. 6 263Google Scholar

    [17]

    Wolf J, Rose-John S, Garbers C 2014 Cytokine 70 11Google Scholar

    [18]

    Akbari Z, Saadati F, Mahdikia H, Freund E, Abbasvandi F, Shokri B, Zali H, Bekeschus S 2021 Appl. Sci. 11 4527Google Scholar

    [19]

    Fu L, Fung F K, Lo A C, Chan Y K, So K F, Wong I Y, Shih K C, Lai J S 2018 Transl. Vis. Sci. Technol. 7 7Google Scholar

    [20]

    覃建锋, 宋海旺, 孙宝飞, 吉杨丹, 龙思方, 杨丹 2024 解剖学报 55 260Google Scholar

    Tan J F, Song H W, Sun B F, Ji Y D, Long S F, Yang D 2024 Acta Anatom. Sin 55 260Google Scholar

    [21]

    Filipe H A L, Loura L M S 2022 Molecules 27 2105Google Scholar

    [22]

    Wu X, Xu L Y, Li E M, Dong G 2022 Chem. Biol. Drug. Des. 99 789Google Scholar

    [23]

    孙远昆, 郭良浩, 王凯程, 王少萌, 宫玉彬 2021 70 248701Google Scholar

    Sun Y K, Guo L H, Wang K C, Wang S M, Gong Y B 2021 Acta Phys. Sin. 70 248701Google Scholar

    [24]

    Zhang Q, Shao D Q, Xu P, Jiang Z T 2022 Polymers-Basel 14 123Google Scholar

    [25]

    Fallah Z, Jamali Y, Rafii-Tabar H 2016 Plos One 11 e0166412Google Scholar

    [26]

    Hu X, Jin X, Xing R, Liu Y, Feng Y, Lyu Y, Zhang R 2023 Results in Physics 51 106621Google Scholar

    [27]

    周晗, 耿轶钊, 晏世伟 2024 73 048701Google Scholar

    Zhou H, Geng Y, Yan S 2024 Acta Phys. Sin. 73 048701Google Scholar

    [28]

    Gupta M, Ha K, Agarwal R, Quarles L D, Smith J C 2021 Proteins 89 163Google Scholar

    [29]

    Schillinger O, Panwalkar V, Strodel B, Dingley A J 2017 J. Phys. Chem. B 121 8113Google Scholar

    [30]

    Arisi M, Soglia S, Pisani E G, et al. 2021 Dermatology Ther. 11 855Google Scholar

    [31]

    Uchida G, Ito T, Ikeda J, Suzuki T, Takenaka K, Setsuhara Y 2018 Jpn. J. Appl. Phys. 57 096201Google Scholar

    [32]

    Lin A, Truong B, Patel S, Kaushik N, Choi E H, Fridman G, Fridman A, Miller V 2017 Int. J. Mol. Sci. 18 966Google Scholar

    [33]

    Hu Q, Joshi R P, Schoenbach K H 2005 Phys. Rev. E 72 031902Google Scholar

    [34]

    Pronk S, Páll S, Schulz R, et al. 2013 Bioinformatics 29 845Google Scholar

    [35]

    Huang J, MacKerell A D 2013 J. Comput. Chem. 34 2135Google Scholar

    [36]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101Google Scholar

    [37]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182Google Scholar

    [38]

    Cheng T M, Blundell T L, Fernandez-Recio J 2007 Proteins 68 503Google Scholar

    [39]

    Biggin P C, Smith G R, Shrivastava I, Choe S, Sansom M S 2001 Biochim. Biophys. Acta 1510 1Google Scholar

    [40]

    Urabe G, Katagiri T, Katsuki S 2020 Bioelectricity 2 33Google Scholar

    [41]

    赵伟, 杨瑞金, 张文斌, 华霄, 唐亚丽 2011 食品科学 32 91Google Scholar

    Zhao W, Yang R J, Zhang W B, Hua X, Tang Y L 2011 Food Sci. 32 91Google Scholar

    [42]

    Leebeek F W, Kariya K, Schwabe M, Fowlkes D M 1992 J. Biol. Chem. 267 14832Google Scholar

    [43]

    Fontaine V, Savino R, Arcone R, de Wit L, Brakenhoff J P, Content J, Ciliberto G 1993 Eur. J. Biochem. 211 749Google Scholar

    [44]

    Yang Z H, Xiao A, Liu D W, Shi Q, Li Y 2023 Plasma Process Polym. 20 2200242Google Scholar

  • [1] 周晗, 耿轶钊, 晏世伟. p53活性四聚体全原子分子动力学分析.  , 2024, 73(4): 048701. doi: 10.7498/aps.73.20231515
    [2] 张洪硕, 周勇壮, 沈咏, 邹宏新. 线型离子阱中钙离子库仑晶体结构和运动轨迹模拟.  , 2023, 72(1): 013701. doi: 10.7498/aps.72.20221674
    [3] 辛勇, 包宏伟, 孙志鹏, 张吉斌, 刘仕超, 郭子萱, 王浩煜, 马飞, 李垣明. U1–xThxO2混合燃料力学性能的分子动力学模拟.  , 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [5] 梁晋洁, 高宁, 李玉红. 体心立方Fe中${ \langle 100 \rangle}$位错环对微裂纹扩展影响的分子动力学研究.  , 2020, 69(11): 116102. doi: 10.7498/aps.69.20200317
    [6] 沈明仁, 刘锐, 厚美瑛, 杨明成, 陈科. 自扩散泳微观转动马达的介观模拟.  , 2016, 65(17): 170201. doi: 10.7498/aps.65.170201
    [7] 王启东, 彭增辉, 刘永刚, 姚丽双, 任淦, 宣丽. 基于混合液晶分子动力学模拟比较液晶分子旋转黏度大小.  , 2015, 64(12): 126102. doi: 10.7498/aps.64.126102
    [8] 袁思伟, 冯妍卉, 王鑫, 张欣欣. α-Al2O3介孔材料导热特性的模拟.  , 2014, 63(1): 014402. doi: 10.7498/aps.63.014402
    [9] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟.  , 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [10] 邓阳, 刘让苏, 周群益, 刘海蓉, 梁永超, 莫云飞, 张海涛, 田泽安, 彭平. 熔体初始温度对液态金属Ni凝固过程中微观结构演变影响的模拟研究.  , 2013, 62(16): 166101. doi: 10.7498/aps.62.166101
    [11] 张崇龙, 孔伟, 杨芳, 刘松芬, 胡北来. 修正屏蔽库仑势下二维尘埃等离子体的动力学和结构特性.  , 2013, 62(9): 095201. doi: 10.7498/aps.62.095201
    [12] 坚增运, 高阿红, 常芳娥, 唐博博, 张龙, 李娜. Ni熔体凝固过程中临界晶核和亚临界晶核的分子动力学模拟.  , 2013, 62(5): 056102. doi: 10.7498/aps.62.056102
    [13] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟.  , 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [14] 权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 类金刚石薄膜力学特性的分子动力学模拟.  , 2010, 59(8): 5687-5691. doi: 10.7498/aps.59.5687
    [15] 侯兆阳, 刘丽霞, 刘让苏, 田泽安. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究.  , 2009, 58(7): 4817-4825. doi: 10.7498/aps.58.4817
    [16] 开花, 李运超, 郭德成, 李双, 李之杰. 斜入射离子束辅助沉积对类金刚石薄膜结构影响的分子动力学模拟.  , 2009, 58(7): 4888-4894. doi: 10.7498/aps.58.4888
    [17] 周丽丽, 刘让苏, 侯兆阳, 田泽安, 林 艳, 刘全慧. 冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究.  , 2008, 57(6): 3653-3660. doi: 10.7498/aps.57.3653
    [18] 侯兆阳, 刘让苏, 王 鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究.  , 2007, 56(1): 376-383. doi: 10.7498/aps.56.376
    [19] 李之杰, 潘正瑛, 朱 靖, 魏 启, 王月霞, 臧亮坤, 周 亮, 刘提将. 离子束辅助沉积对类金刚石膜结构影响的计算机模拟.  , 2005, 54(5): 2233-2238. doi: 10.7498/aps.54.2233
    [20] 侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星. 冷速对液态金属Na凝固过程中微观结构影响的模拟研究.  , 2005, 54(12): 5723-5729. doi: 10.7498/aps.54.5723
计量
  • 文章访问数:  423
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-05
  • 修回日期:  2024-08-01
  • 上网日期:  2024-08-14
  • 刊出日期:  2024-09-20

/

返回文章
返回
Baidu
map