Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of source intensity errors in unidimensional Gaussian modulation continuous-variable quantum key distribution

WANG Pu BAI Zengliang CHANG Liwei

Citation:

Influence of source intensity errors in unidimensional Gaussian modulation continuous-variable quantum key distribution

WANG Pu, BAI Zengliang, CHANG Liwei
cstr: 32037.14.aps.74.20250025
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Unidimensional Gaussian modulation continuous-variable quantum key distribution (UD CV-QKD) uses only one modulator to encode information. The UD CV-QKD has the advantages of low implementation cost and low random number consumption, making it attractive for the construction of future miniaturized and low-cost large-scale quantum communication networks. However, in the actual application of the protocol, the intensity fluctuation of the source pulsed light, device defects, and external environmental interference maybe lead to the generation of source intensity errors, thereby affecting the realistic security and performance of the protocol. To solve these problems, the security and performance of UD CV-QKD are studied in depth under source intensity errors in this work. The mechanism of source intensity errors influencing the protocol parameter estimation process is analyzed. To make it possible that the protocol can operate stably under various realistic conditions and ensure communication security, three practical assumptions about the sender’s abilities are made in this work, and corresponding data optimization processing schemes for these assumptions are proposed to reduce the negative influence of source intensity errors. Additionally, both source errors and finite-size effect are comprehensively considered to ensure the realistic security of the system. The simulation results indicate that the source intensity errors cannot be neglected and the maximum transmission distance of the system will be reduced by approximately 20 km for significant intensity fluctuations. Therefore, in the practical implementation of the protocol, the influence of source intensity errors must be fully considered, and the corresponding countermeasures should be taken to reduce or even eliminate these errors. This study provides theoretical guidance for securely implementing the UD CV-QKD in real-world environments.
      Corresponding author: WANG Pu, wangpu@sxufe.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62305198) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 202303021212168, 202103021224290).
    [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore: IEEE) p175

    [2]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [3]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [4]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptology 5 3Google Scholar

    [5]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214Google Scholar

    [6]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [7]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [8]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [9]

    Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar

    [10]

    Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S, Peng K C 2017 Chin. Phys. B 26 040303Google Scholar

    [11]

    Guo H, Li Z Y, Yu S, Zhang Y C 2021 Fundam. Res. 1 96Google Scholar

    [12]

    Zhang Y C, Bian Y M, Li Z Y, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [13]

    Lin J, Upadhyaya T, Lütkenhaus N 2019 Phys. Rev. X 9 041064Google Scholar

    [14]

    Du S N, Tian Y, Li Y M 2020 Phys. Rev. Appl. 14 024013Google Scholar

    [15]

    Li L, Huang P, Wang T, Zeng G H 2021 Phys. Rev. A 103 032611Google Scholar

    [16]

    Liao Q, Wang Z, Liu H J, Mao Y Y, Fu X Q 2022 Phys. Rev. A 106 022607Google Scholar

    [17]

    Liu J Q, Cao Y X, Wang P, Liu S S, Lu Z G, Wang X Y, Li Y M 2022 Opt. Express 30 27912Google Scholar

    [18]

    吴晓东, 黄端, 黄鹏, 郭迎 2022 71 240304Google Scholar

    Wu X D, Huang D, Huang P, Guo Y 2022 Acta Phys. Sin. 71 240304Google Scholar

    [19]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [20]

    Huang L Y, Wang X Y, Chen Z Y, Sun Y H, Yu S, Guo H 2023 Phys. Rev. Appl. 19 014023Google Scholar

    [21]

    Zapatero V, van Leent T, Arnon-Friedman R, Liu W Z, Zhang Q, Weinfurter H, Curty M 2023 npj Quantum Inf. 9 10Google Scholar

    [22]

    Xu Y H, Wang T, Liao X J, Zhou Y M, Huang P, Zeng G H 2024 Photonics Res. 12 2549Google Scholar

    [23]

    Fletcher A I, Harney C, Ghalaii M, Papanastasiou P, Mountogiannakis A, Spedalieri G, Hajomer A A E, Gehring T, Pirandola S 2025 arXiv: 2501.09818 [quant-ph]

    [24]

    Wang P, Wang X Y, Li Y M 2019 Phys. Rev. A 99 042309Google Scholar

    [25]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [26]

    Dequal D, Trigo Vidarte L, Roman Rodriguez V, Vallone G, Villoresi P, Leverrier A, Diamanti E 2021 npj Quantum Inf. 7 3Google Scholar

    [27]

    Jeong S, Jung H, Ha J 2022 npj Quantum Inf. 8 6Google Scholar

    [28]

    Ma L, Yang J, Zhang T, Shao Y, Liu J L, Luo Y J, Wang H, Huang W, Fan F, Zhou C, Zhang L L, Zhang S, Zhang Y C, Li Y, Xu B J 2023 Sci. China Inf. Sci. 66 180507Google Scholar

    [29]

    Pi Y D, Wang H, Pan Y, Shao Y, Li Y, Yang J, Zhang Y C, Huang W, Xu B J 2023 Opt. Lett. 48 1766Google Scholar

    [30]

    Wang P, Zhang Y, Lu Z G, Wang X Y, Li Y M 2023 New J. Phys. 25 023019Google Scholar

    [31]

    Yang S S, Yan Z L, Yang H Z, Lu Q, Lu Z G, Cheng L Y, Miao X Y, Li Y M 2023 EPJ Quantum Technol. 10 40Google Scholar

    [32]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28Google Scholar

    [33]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [34]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [35]

    Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl. 13 054065Google Scholar

    [36]

    Milovančev D, Vokić N, Laudenbach F, Pacher C, Hübel H, Schrenk B 2021 J. Lightwave Technol. 39 3445Google Scholar

    [37]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar

    [38]

    Du S N, Wang P, Liu J Q, Tian Y, Li Y M 2023 Photonics Res. 11 463Google Scholar

    [39]

    Wang X Y, Chen Z Y, Li Z H, Qi D K, Yu S, Guo H 2023 Opt. Lett. 48 3327Google Scholar

    [40]

    Zhang M Q, Huang P, Wang P, Wei S R, Zeng G H 2023 Opt. Lett. 48 1184Google Scholar

    [41]

    Hajomer A A E, Bruynsteen C, Derkach I, Jain N, Bomhals A, Bastiaens S, Andersen U L, Yin X, Gehring T 2024 Optica 11 1197Google Scholar

    [42]

    Hajomer A A E, Derkach I, Filip R, Andersen U L, Usenko V C, Gehring T 2024 Light Sci. Appl. 13 291Google Scholar

    [43]

    Ji F Y, Huang P, Wang T, Jiang X Q, Zeng G H 2024 Photonics Res. 12 1485Google Scholar

    [44]

    Usenko V C, Grosshans F 2015 Phys. Rev. A 92 062337Google Scholar

    [45]

    Wang P, Wang X Y, Li J Q, Li Y M 2017 Opt. Express 25 27995Google Scholar

    [46]

    Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330Google Scholar

    [47]

    Jacobsen C S, Madsen L S, Usenko V C, Filip R, Andersen U L 2018 npj Quantum Inf. 4 32Google Scholar

    [48]

    Liao Q, Guo Y, Xie C L, Huang D, Huang P, Zeng G H 2018 Quantum Inf. Process. 17 113Google Scholar

    [49]

    Usenko V C 2018 Phys. Rev. A 98 032321Google Scholar

    [50]

    Wang P, Wang X Y, Li Y M 2018 Entropy 20 157Google Scholar

    [51]

    Wang X Y, Cao Y X, Wang P, Li Y M 2018 Quantum Inf. Process. 17 344Google Scholar

    [52]

    Bai D Y, Huang P, Zhu Y Q, Ma H X, Xiao T L, Wang T, Zeng G H 2020 Quantum Inf. Process. 19 53Google Scholar

    [53]

    Shen S Y, Dai M W, Zheng X T, Sun Q Y, Guo G C, Han Z F 2019 Phys. Rev. A 100 012325Google Scholar

    [54]

    Zhang H, Ruan X C, Wu X D, Zhang L, Guo Y, Huang D 2019 Quantum Inf. Process. 18 128Google Scholar

    [55]

    Zhao W, Shi R H, Feng Y Y, Huang D 2020 Phys. Lett. A 384 126061Google Scholar

    [56]

    Zhou K L, Chen Z Y, Guo Y, Liao Q 2020 Phys. Lett. A 384 126074Google Scholar

    [57]

    Bian Y M, Huang L Y, Zhang Y C 2021 Entropy 23 294Google Scholar

    [58]

    Hu J K, Liao Q, Mao Y, Guo Y 2021 Quantum Inf. Process. 20 31Google Scholar

    [59]

    Zhao W, Shi R H, Wu X M, Wang F Q, Ruan X C 2023 Opt. Express 31 17003Google Scholar

    [60]

    Li Y Y, Wang T Y 2024 J. Phys. B: At. Mol. Opt. Phys. 57 145502Google Scholar

    [61]

    Zhao R B, Zhou J, Shi R H, Shi J J 2024 Ann. Phys. 536 2300401Google Scholar

    [62]

    Zheng Y, Huang P, Huang A Q, Peng J Y, Zeng G H 2019 Opt. Express 27 27369Google Scholar

    [63]

    Zheng Y, Huang P, Huang A Q, Peng J Y, Zeng G H 2019 Phys. Rev. A 100 012313Google Scholar

    [64]

    Wang P, Wang X Y, Li Y M 2020 Phys. Rev. A 102 022609Google Scholar

    [65]

    Li C Y, Qian L, Lo H K 2021 npj Quantum Inf. 7 150Google Scholar

    [66]

    Serafini A, Paris M G A, Illuminati F, Siena S D 2005 J. Opt. B: Quantum Semiclassical Opt. 7 R19Google Scholar

  • 图 1  一维高斯调制连续变量量子密钥分发模型 (a)准备测量方案; (b)基于纠缠方案

    Figure 1.  Unidimensional Gaussian modulation continuous-variable quantum key distribution models: (a) Preparation and measurement scheme; (b) entanglement-based scheme.

    图 2  (a)实际的光脉冲强度$ I' $随时间$t$呈现出动态变化; (b)在相空间中, 由于源强度误差的影响, 实际制备的相干态可能会偏离目标相干态的位置

    Figure 2.  (a) Actual optical pulse intensity dynamically changes over time; (b) the actual prepared coherent state may deviate from the target coherent state’s location in the phase space under the influence of source intensity errors.

    图 3  (a)不同均匀分布强度波动下密钥率随着传输距离的变化; (b)不同高斯分布强度波动下密钥率随着传输距离的变化

    Figure 3.  (a) Comparison of secret key rates at various transmission distances for intensity fluctuation models following a uniform distribution; (b) comparison of secret key rates at various transmission distances for intensity fluctuation models adhering to a Gaussian distribution.

    图 4  不同源强度误差对协议性能的影响

    Figure 4.  Influence of different source intensity errors on protocol performance.

    图 5  不同码长下协议性能比较 (a) 考虑第二种源误差模型; (b) 考虑第三种源误差模型

    Figure 5.  Comparison of protocol performance under different total exchanged signals sizes: (a) Considering the second source error model; (b) considering the third source error model.

    图 6  $N = {10^{10}}$码长下不同源误差对应的协议密钥率和传输距离 (a) 考虑第二种源误差模型; (b) 考虑第三种源误差模型

    Figure 6.  Protocol key rate and transmission distance corresponding to different source errors under the total exchanged signals of $N = {10^{10}}$: (a) Considering the second source error model; (b) considering the third source error model.

    Baidu
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing (Bangalore: IEEE) p175

    [2]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [3]

    Lo H K, Curty M, Tamaki K 2014 Nat. Photonics 8 595Google Scholar

    [4]

    Bennett C H, Bessette F, Brassard G, Salvail L, Smolin J 1992 J. Cryptology 5 3Google Scholar

    [5]

    Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F, Wang X B, Peng C Z, Pan J W 2021 Nature 589 214Google Scholar

    [6]

    Xu F H, Ma X F, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [7]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shamsul Shaari J, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [8]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [9]

    Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar

    [10]

    Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S, Peng K C 2017 Chin. Phys. B 26 040303Google Scholar

    [11]

    Guo H, Li Z Y, Yu S, Zhang Y C 2021 Fundam. Res. 1 96Google Scholar

    [12]

    Zhang Y C, Bian Y M, Li Z Y, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318Google Scholar

    [13]

    Lin J, Upadhyaya T, Lütkenhaus N 2019 Phys. Rev. X 9 041064Google Scholar

    [14]

    Du S N, Tian Y, Li Y M 2020 Phys. Rev. Appl. 14 024013Google Scholar

    [15]

    Li L, Huang P, Wang T, Zeng G H 2021 Phys. Rev. A 103 032611Google Scholar

    [16]

    Liao Q, Wang Z, Liu H J, Mao Y Y, Fu X Q 2022 Phys. Rev. A 106 022607Google Scholar

    [17]

    Liu J Q, Cao Y X, Wang P, Liu S S, Lu Z G, Wang X Y, Li Y M 2022 Opt. Express 30 27912Google Scholar

    [18]

    吴晓东, 黄端, 黄鹏, 郭迎 2022 71 240304Google Scholar

    Wu X D, Huang D, Huang P, Guo Y 2022 Acta Phys. Sin. 71 240304Google Scholar

    [19]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [20]

    Huang L Y, Wang X Y, Chen Z Y, Sun Y H, Yu S, Guo H 2023 Phys. Rev. Appl. 19 014023Google Scholar

    [21]

    Zapatero V, van Leent T, Arnon-Friedman R, Liu W Z, Zhang Q, Weinfurter H, Curty M 2023 npj Quantum Inf. 9 10Google Scholar

    [22]

    Xu Y H, Wang T, Liao X J, Zhou Y M, Huang P, Zeng G H 2024 Photonics Res. 12 2549Google Scholar

    [23]

    Fletcher A I, Harney C, Ghalaii M, Papanastasiou P, Mountogiannakis A, Spedalieri G, Hajomer A A E, Gehring T, Pirandola S 2025 arXiv: 2501.09818 [quant-ph]

    [24]

    Wang P, Wang X Y, Li Y M 2019 Phys. Rev. A 99 042309Google Scholar

    [25]

    Zhang Y C, Chen Z Y, Pirandola S, Wang X Y, Zhou C, Chu B J, Zhao Y J, Xu B J, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [26]

    Dequal D, Trigo Vidarte L, Roman Rodriguez V, Vallone G, Villoresi P, Leverrier A, Diamanti E 2021 npj Quantum Inf. 7 3Google Scholar

    [27]

    Jeong S, Jung H, Ha J 2022 npj Quantum Inf. 8 6Google Scholar

    [28]

    Ma L, Yang J, Zhang T, Shao Y, Liu J L, Luo Y J, Wang H, Huang W, Fan F, Zhou C, Zhang L L, Zhang S, Zhang Y C, Li Y, Xu B J 2023 Sci. China Inf. Sci. 66 180507Google Scholar

    [29]

    Pi Y D, Wang H, Pan Y, Shao Y, Li Y, Yang J, Zhang Y C, Huang W, Xu B J 2023 Opt. Lett. 48 1766Google Scholar

    [30]

    Wang P, Zhang Y, Lu Z G, Wang X Y, Li Y M 2023 New J. Phys. 25 023019Google Scholar

    [31]

    Yang S S, Yan Z L, Yang H Z, Lu Q, Lu Z G, Cheng L Y, Miao X Y, Li Y M 2023 EPJ Quantum Technol. 10 40Google Scholar

    [32]

    Chen Z Y, Wang X Y, Yu S, Li Z Y, Guo H 2023 npj Quantum Inf. 9 28Google Scholar

    [33]

    Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474Google Scholar

    [34]

    Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839Google Scholar

    [35]

    Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl. 13 054065Google Scholar

    [36]

    Milovančev D, Vokić N, Laudenbach F, Pacher C, Hübel H, Schrenk B 2021 J. Lightwave Technol. 39 3445Google Scholar

    [37]

    Tian Y, Wang P, Liu J Q, Du S N, Liu W Y, Lu Z G, Wang X Y, Li Y M 2022 Optica 9 492Google Scholar

    [38]

    Du S N, Wang P, Liu J Q, Tian Y, Li Y M 2023 Photonics Res. 11 463Google Scholar

    [39]

    Wang X Y, Chen Z Y, Li Z H, Qi D K, Yu S, Guo H 2023 Opt. Lett. 48 3327Google Scholar

    [40]

    Zhang M Q, Huang P, Wang P, Wei S R, Zeng G H 2023 Opt. Lett. 48 1184Google Scholar

    [41]

    Hajomer A A E, Bruynsteen C, Derkach I, Jain N, Bomhals A, Bastiaens S, Andersen U L, Yin X, Gehring T 2024 Optica 11 1197Google Scholar

    [42]

    Hajomer A A E, Derkach I, Filip R, Andersen U L, Usenko V C, Gehring T 2024 Light Sci. Appl. 13 291Google Scholar

    [43]

    Ji F Y, Huang P, Wang T, Jiang X Q, Zeng G H 2024 Photonics Res. 12 1485Google Scholar

    [44]

    Usenko V C, Grosshans F 2015 Phys. Rev. A 92 062337Google Scholar

    [45]

    Wang P, Wang X Y, Li J Q, Li Y M 2017 Opt. Express 25 27995Google Scholar

    [46]

    Wang X Y, Liu W Y, Wang P, Li Y M 2017 Phys. Rev. A 95 062330Google Scholar

    [47]

    Jacobsen C S, Madsen L S, Usenko V C, Filip R, Andersen U L 2018 npj Quantum Inf. 4 32Google Scholar

    [48]

    Liao Q, Guo Y, Xie C L, Huang D, Huang P, Zeng G H 2018 Quantum Inf. Process. 17 113Google Scholar

    [49]

    Usenko V C 2018 Phys. Rev. A 98 032321Google Scholar

    [50]

    Wang P, Wang X Y, Li Y M 2018 Entropy 20 157Google Scholar

    [51]

    Wang X Y, Cao Y X, Wang P, Li Y M 2018 Quantum Inf. Process. 17 344Google Scholar

    [52]

    Bai D Y, Huang P, Zhu Y Q, Ma H X, Xiao T L, Wang T, Zeng G H 2020 Quantum Inf. Process. 19 53Google Scholar

    [53]

    Shen S Y, Dai M W, Zheng X T, Sun Q Y, Guo G C, Han Z F 2019 Phys. Rev. A 100 012325Google Scholar

    [54]

    Zhang H, Ruan X C, Wu X D, Zhang L, Guo Y, Huang D 2019 Quantum Inf. Process. 18 128Google Scholar

    [55]

    Zhao W, Shi R H, Feng Y Y, Huang D 2020 Phys. Lett. A 384 126061Google Scholar

    [56]

    Zhou K L, Chen Z Y, Guo Y, Liao Q 2020 Phys. Lett. A 384 126074Google Scholar

    [57]

    Bian Y M, Huang L Y, Zhang Y C 2021 Entropy 23 294Google Scholar

    [58]

    Hu J K, Liao Q, Mao Y, Guo Y 2021 Quantum Inf. Process. 20 31Google Scholar

    [59]

    Zhao W, Shi R H, Wu X M, Wang F Q, Ruan X C 2023 Opt. Express 31 17003Google Scholar

    [60]

    Li Y Y, Wang T Y 2024 J. Phys. B: At. Mol. Opt. Phys. 57 145502Google Scholar

    [61]

    Zhao R B, Zhou J, Shi R H, Shi J J 2024 Ann. Phys. 536 2300401Google Scholar

    [62]

    Zheng Y, Huang P, Huang A Q, Peng J Y, Zeng G H 2019 Opt. Express 27 27369Google Scholar

    [63]

    Zheng Y, Huang P, Huang A Q, Peng J Y, Zeng G H 2019 Phys. Rev. A 100 012313Google Scholar

    [64]

    Wang P, Wang X Y, Li Y M 2020 Phys. Rev. A 102 022609Google Scholar

    [65]

    Li C Y, Qian L, Lo H K 2021 npj Quantum Inf. 7 150Google Scholar

    [66]

    Serafini A, Paris M G A, Illuminati F, Siena S D 2005 J. Opt. B: Quantum Semiclassical Opt. 7 R19Google Scholar

  • [1] GUO Xiaomin, WANG Qiqi, LUO Yue, SONG Zhijie, LI Zhengya, QU Yikun, GUO Yanqiang, XIAO Liantuan. Dual-parallel continuous variable quantum random number generator with real-time entropy source evaluation. Acta Physica Sinica, 2025, 74(11): . doi: 10.7498/aps.74.20250333
    [2] SUN Xin, GUO Junjie, CHEN Yujie, CHENG Jin, LIU Ao, LIU Wenbo, YIN Peng, CHEN Lanjian, WU Tianyi, DONG Chen. Feasibility analysis study of discrete modulation continuous variable quantum key distribution for spatial channels. Acta Physica Sinica, 2025, 74(9): 090303. doi: 10.7498/aps.74.20241682
    [3] He Ying, Wang Tian-Yi, Li Ying-Ying. Composable security analysis of linear optics cloning machine improved discretized polar modulation continuous-variable quantum key distribution. Acta Physica Sinica, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [4] Zhang Guang-Wei, Bai Jian-Dong, Jie Qi, Jin Jing-Jing, Zhang Yong-Mei, Liu Wen-Yuan. Research on dynamic polarization control in continuous variable quantum key distribution systems. Acta Physica Sinica, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [5] Wu Xiao-Dong, Huang Duan. Underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice. Acta Physica Sinica, 2024, 73(21): 210302. doi: 10.7498/aps.73.20240804
    [6] Zhang Yun-Jie, Wang Xu-Yang, Zhang Yu, Wang Ning, Jia Yan-Xiang, Shi Yu-Qi, Lu Zhen-Guo, Zou Jun, Li Yong-Min. Four-state discrete modulation continuous variable quantum key distribution based on hardware synchronization. Acta Physica Sinica, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [7] Wu Xiao-Dong, Huang Duan. Plug-and-play discrete modulation continuous variable quantum key distribution based on non-Gaussian state-discrimination detection. Acta Physica Sinica, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [8] Liao Qin, Liu Hai-Jie, Wang Zheng, Zhu Ling-Jin. Gaussian-modulated continuous-variable quantum key distribution based on untrusted entanglement source. Acta Physica Sinica, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [9] Wu Xiao-Dong, Huang Duan, Huang Peng, Guo Ying. Discrete modulation continuous-variable measurement-device-independent quantum key distribution scheme based on realistic detector compensation. Acta Physica Sinica, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [10] Ma Xiao, Sun Ming-Shuo, Liu Jing-Yang, Ding Hua-Jian, Wang Qin. State preparation error tolerant quantum key distribution protocol based on heralded single photon source. Acta Physica Sinica, 2022, 71(3): 030301. doi: 10.7498/aps.71.20211456
    [11] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [12] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [13] Cao Zheng-Wen, Zhang Shuang-Hao, Feng Xiao-Yi, Zhao Guang, Chai Geng, Li Dong-Wei. The design and realization of continuous-variable quantum key distribution system based on real-time shot noise variance monitoring. Acta Physica Sinica, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [14] Liu Jian-Qiang, Wang Xu-Yang, Bai Zeng-Liang, Li Yong-Min. Highprecision auto-balance of the time-domain pulsed homodyne detector. Acta Physica Sinica, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [15] Xu Bing-Jie, Tang Chun-Ming, Chen Hui, Zhang Wen-Zheng, Zhu Fu-Chen. Improving the maximum transmission distance of coutinuous variable no-switching QKD protocol. Acta Physica Sinica, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [16] Shen Yong, Zou Hong-Xin. Security bound of continuous-variable quantum key distribution with discrete modulation. Acta Physica Sinica, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [17] Zhu Chang-Hua, Chen Nan, Pei Chang-Xing, Quan Dong-Xiao, Yi Yun-Hui. Adaptive continuous variable quantum key distribution based on channel estimation. Acta Physica Sinica, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [18] Wang Kai, Pei Wen-Jiang, Zou Liu-Hua, He Zhen-Ya. Cryptanalysis of multiple chaotic systems based public key encryption technique. Acta Physica Sinica, 2006, 55(12): 6243-6247. doi: 10.7498/aps.55.6243
    [19] Zhang Quan, Tang Chao-Jing, Zhang Shen-Qiang. . Acta Physica Sinica, 2002, 51(7): 1439-1447. doi: 10.7498/aps.51.1439
    [20] Yang Li, Wu Ling-An, Liu Song-Hao. . Acta Physica Sinica, 2002, 51(11): 2446-2451. doi: 10.7498/aps.51.2446
Metrics
  • Abstract views:  353
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  07 January 2025
  • Accepted Date:  05 February 2025
  • Available Online:  25 February 2025
  • Published Online:  05 May 2025

/

返回文章
返回
Baidu
map