-
源于量子内禀随机性的量子随机数发生器(QRNG)提供了安全性信息论可证的真随机数.本文提出一种融合实时相空间监测与熵评估的二重并行连续变量QRNG方案,通过动态阈值监测机制与自适应后处理矩阵规模调整技术,同步提升QRNG安全性与生成效率,该方案创新性地将熵源状态追踪与随机数提取优化相结合.实验上构建基于外差探测的真空态双边带模并行提取系统,为高精度、高速全息重构量子态和四路并行提取量子随机数提供了充足的原始数据;高动态范围、高分辨率、矩阵规模实时可调的硬件基Toeplitz-hash后处理协调了熵源状态追踪与随机数提取优化.在保持17 Gbps以上高产率的同时可有效抵御边信道攻击,通过了NIST SP 800-22、Diehard及TestU01标准测试.本工作为解决QRNG实时熵源可信评估难题提供了技术路径,且该方案集成度高、扩展性好,为量子随机数发生器走向应用提供了一种切实可行的方案.
-
关键词:
- 量子随机数 /
- 连续变量量子态 /
- 量子条件最小熵 /
- FPGA实时Toeplitz-hash后处理
Continuous-variable quantum random number generator (cv-QRNG) is appealing for its convenience of state preparation and high measurement bandwidth. Chip-size integration of this type of QRNG is expectable because all components involved have been integrated on a single chip recently. Most of the existing schemes, including all existing commercial schemes, usually take a once-and-for-all approach to the evaluation of quantum entropy. In this work, we propose a double-level parallel cv-QRNG scheme that integrates real-time phase-space monitoring and entropy evaluation. By dynamically threshold monitoring and self-adapting scaling of Toeplitz matrix, the security and generation rate of QRNG can be simultaneously enhanced.
Experimentally, a parallel extraction system of vacuum state double quadratures and multiple sideband modes is constructed based on heterodyne, providing sufficient raw data for high-precision and high-speed tomography reconstruction of quantum entropy source and parallel extraction of QRNG. Based on the statistical analysis of data under long-term stable operation of the system, dynamic KLD-sensitive security threshold for statistical distribution of Husimi-Q function of the entropy source is established. When a weak chaotic field is injected to simulate a thermal state attack, the KLD value jumps and quickly deviates from the steady state baseline, manifesting a sensitive attack recognition. It is worth pointing out that the threshold parameter can be dynamically optimized according to the security requirements of actual application scenarios. An FPGA-based real-time feedback Toeplitz-hash extractor employs a maximum matrix bit-width truncation method to dynamically adjust Toeplitz matrix parameters. This optimization reduces the maximum extraction ratio interval from 6% to 1.8%, with all intervals below 1% for extraction ratios ≤76%, significantly mitigating entropy losses caused by discrete adjustment of the Toeplitz matrix, and achieving a minimum extraction ratio of 16.9%. This flexibility enables the system to accurately control the response sensitivity of abnormal signals while maintaining the real-time generation of quantum random bits. Finally, real-time generation rate of 17.512 Gbps is attained with security parameters at the level of 10-50 and the generated random numbers passed NIST SP 800-22, Diehard, and TestU01 standard tests.
This research provides a technical path for real-time entropy source security assessment for QRNG. The proposed scheme has well integrability and scalability, offering a feasible solution for QRNG to enter the application stage.-
Keywords:
- quantum random number /
- continuous variable quantum state /
- quantum conditioned min-entropy /
- FPGA based real-time toeplitz-hash postprocessing
-
[1] Wahl M, Leifgen M, Berlin M, Röhlicke T, Rahn H J, Benson O 2011 Appl. Phys. Lett. 98 171105
[2] Nie Y Q, Zhang H F, Zhang Z, Wang J, Ma X, Zhang J, Pan J W 2014 Appl. Phys. Lett. 104 051110
[3] Ma H Q, Xie Y, Wu L A 2005 Appl. Opt. 44 7760
[4] Aungskunsiri K, Jantarachote S, Wongpanya K, Amarit R, Punpetch P, Sumriddetchkajorn S 2023 ACS Omega 8 35085
[5] Jennewein T, Achleitner U, Weihs G, Weinfurter H, Zeilinger A 2000 Rev. Sci. Instrum. 71 1675
[6] Ren M, Wu E, Liang Y, Jian Y, Wu G, Zeng H 2011 Phys. Rev. A 83 023820
[7] Lian-Tuan X, Yan-Ting Z, Tao H, Jian-Ming Z, Wang-Bao Y, Suo-Tang J 2004 Chin. Phys. Lett. 21 489
[8] Eaton M, Hossameldin A, Birrittella R J, Alsing P M, Gerry C C, Dong H, Cuevas C, Pfister O 2023 Nat. Photonics 17 106
[9] Wei W, Guo H 2009 Opt. Lett. 34 1876
[10] Applegate M J, Thomas O, Dynes J F, Yuan Z L, Ritchie D A, Shields A J 2015 Appl. Phys. Lett. 107 071106
[11] Guo H, Tang W, Liu Y, Wei W 2010 Phys. Rev. E 81 051137
[12] Raffaelli F, Sibson P, Kennard J E, Mahler D H, Thompson M G, Matthews J C F 2018 Opt. Express 26 19730
[13] Li J, Huang Z, Yu C, Wu J, Zhao T, Zhu X, Sun S 2024 Opt. Express 32 5056
[14] Liu W, Cao Y, Wang X, Li Y 2020 Phys. Rev. A 102 032625
[15] Shen Y, Tian L, Zou H 2010 Phys. Rev. A 81 063814
[16] Symul T, Assad S M, Lam P K 2011 Appl. Phys. Lett. 98 231103
[17] Bruynsteen C, Gehring T, Lupo C, Bauwelinck J, Yin X 2023 PRX Quantum 4 010330
[18] Gehring T, Lupo C, Kordts A, Solar Nikolic D, Jain N, Rydberg T, Pedersen T B, Pirandola S, Andersen U L 2021 Nat. Commun. 12 605
[19] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621
[20] Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711
[21] Guo X, Liu R, Li P, Cheng C, Wu M, Guo Y 2018 Entropy 20 819
[22] Haw J Y, Assad S M, Lance A M, Ng N H Y, Sharma V, Lam P K, Symul T 2015 Phys. Rev. Appl. 3 054004
[23] Guo X, Cheng C, Wu M, Gao Q, Li P, Guo Y 2019 Opt. Lett. 44 5566
[24] Kumar R, Barrios E, MacRae A, Cairns E, Huntington E H, Lvovsky A I 2012 Opt. Commun. 285 5259
[25] Zheng Z, Zhang Y, Huang W, Yu S, Guo H 2019 Rev. Sci. Instrum. 90 043105
[26] Shalm L K, Zhang Y, Bienfang J C, Schlager C, Stevens M J, Mazurek M D, Abellán C, Amaya W, Mitchell M W, Alhejji M A, Fu H, Ornstein J, Mirin R P, Nam S W, Knill E 2021 Nat. Phys. 17 452
[27] Liu Y, Zhao Q, Li M H, Guan J Y, Zhang Y, Bai B, Zhang W, Liu W Z, Wu C, Yuan X, Li H, Munro W J, Wang Z, You L, Zhang J, Ma X, Fan J, Zhang Q, Pan J W 2018 Nature 562 548
[28] Zhang J, Li Y, Zhao M, Han D, Liu J, Wang M, Gong Q, Xiang Y, He Q, Su X 2025 Light Sci. Appl. 14 25
[29] Liu L, Yang J, Wu M, Liu J, Huang W, Li Y, Xu B 2025 Entropy 27 68
[30] Cao Z, Zhou H, Yuan X, Ma X 2016 Phys. Rev. X 6 011020
[31] Nie Y Q, Zhou H, Bai B, Xu Q, Ma X, Zhang J, Pan J W 2024 Quantum Sci. Technol. 9 025024
[32] Michel T, Haw J Y, Marangon D G, Thearle O, Vallone G, Villoresi P, Lam P K, Assad S M 2019 Phys. Rev. Appl. 12 034017
[33] Pivoluska M, Plesch M, Farkas M, Ružičková N, Flegel C, Valencia N H, McCutcheon W, Malik M, Aguilar E A 2021 npj Quantum Inf. 7 1
[34] Marangon D G, Vallone G, Villoresi P 2017 Phys. Rev. Lett. 118 060503
[35] Xu B, Chen Z, Li Z, Yang J, Su Q, Huang W, Zhang Y, Guo H 2019 Quantum Sci. Technol. 4 025013
[36] Ma X, Yuan X, Cao Z, Qi B, Zhang Z 2016 npj Quantum Inf 2 1
[37] Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524
[38] Drahi D, Walk N, Hoban M J, Fedorov A K, Shakhovoy R, Feimov A, Kurochkin Y, Kolthammer W S, Nunn J, Barrett J, Walmsley I A 2020 Phys. Rev. X 10 041048
[39] Huang W, Zhang Y, Zheng Z, Li Y, Xu B, Yu S 2020 Phys. Rev. A 102 012422
[40] Gabriel C, Wittmann C, Sych D, Dong R, Mauerer W, Andersen U L, Marquardt C, Leuchs G 2010 Nat. Photonics 4 711
[41] Shi Y, Chng B, Kurtsiefer C 2016 Appl. Phys. Lett. 109
[42] Lin F, Ge W, Song Z, Cui X, Guo Y, Guo X, Xiao L 2024 J. Lightwave Technol. 42 8606
[43] Tanizawa K, Kato K, Futami F 2024 J. Lightwave Technol. 42 1209
[44] Haylock B, Peace D, Lenzini F, Weedbrook C, Lobino M 2019 Quantum 3 141
[45] Smithey D T, Beck M, Raymer M G, Faridani A 1993 Phys. Rev. Lett. 70 1244
[46] Ourjoumtsev A, Tualle-Brouri R, Grangier P 2006 Phys. Rev. Lett. 96 213601
[47] Neergaard-Nielsen J S, Nielsen B M, Hettich C, Mølmer K, Polzik E S 2006 Phys. Rev. Lett. 97 083604
[48] Avesani M, Marangon D G, Vallone G, Villoresi P 2018 Nat Commun 9 5365
[49] Shapiro J, Wagner S 1984 IEEE J. Quantum Electron. 20 803
[50] Radhakrishna Rao C 2021 A Tribute to the Legend of Professor C. R. Rao (Singapore: Springer) pp1–13
[51] Ren Z H, Li Y, Li Y N, Li W D 2019 Acta Phys. Sin. 68 040601 (in Chinese)[任志红, 李岩, 李艳娜, 李卫东2019 68 040601]
[52] Arthurs E, Kelly J L 1965 Bell Syst. Tech. J. 44 725
[53] Řeháček J, Teo Y S, Hradil Z, Wallentowitz S 2015 Sci. Rep. 5 1
[54] Müller C R, Peuntinger C, Dirmeier T, Khan I, Vogl U, Marquardt C, Leuchs G, Sánchez-Soto L L, Teo Y S, Hradil Z, Řeháček J 2016 Phys. Rev. Lett. 117 070801
[55] Cramér H 1949 Mathematical Methods of Statistics (Princeton: Princeton University Press) pp1-575
[56] Hershey J R, Olsen P A 2007 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP ’07, Hawaii, 2007-04, ppIV-317–IV-320
[57] Rached Z, Alajaji F, Campbell L L 2004 IEEE Trans. Inf. Theory 50 917
[58] Lu Y, Stuart A, Weber H 2017 SIAM/ASA J. Uncertain. Quantif. 5 1136
[59] Popescu P G, Dragomir S S, Slusanschi E I, Sta O N 2016 Electron. J. Differ. Equ. 237 pp1
[60] Wu Y, Ma X 2022 Renew. Energy 181 554
[61] Smithey D T, Beck M, Cooper J, Raymer M G 1993 Phys. Rev. A 48 3159
[62] Řeháček J, Hradil Z, Knill E, Lvovsky A I 2007 Phys. Rev. A 75 042108
[63] Lvovsky A I 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S556
[64] Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299
[65] Smith P R, Marangon D G, Lucamarini M, Yuan Z L, Shields A J 2021 Phys. Rev. Appl. 15 044044
[66] Qin H, Kumar R, Makarov V, Alléaume R 2018 Phys. Rev. A 98 012312
[67] Xia X, Sun J, Liu W 2023 2023 5th International Conference on Circuits and Systems (ICCS), Huzhou, 2023-10, pp108–113
[68] Haw J Y, Assad S M, Lance A M, Ng N H Y, Sharma V, Lam P K, Symul T 2015 Phys. Rev. Appl. 3 054004
[69] Chen Z, Wang X, Yu S, Li Z, Guo H 2023 npj Quantum Inf 9 1
[70] Huang J Z, Kunz-Jacques S, Jouguet P, Weedbrook C, Yin Z Q, Wang S, Chen W, Guo G C, Han Z F 2014 Phys. Rev. A 89 032304
[71] Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333
计量
- 文章访问数: 35
- PDF下载量: 0
- 被引次数: 0