Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The design and realization of continuous-variable quantum key distribution system based on real-time shot noise variance monitoring

Cao Zheng-Wen Zhang Shuang-Hao Feng Xiao-Yi Zhao Guang Chai Geng Li Dong-Wei

Citation:

The design and realization of continuous-variable quantum key distribution system based on real-time shot noise variance monitoring

Cao Zheng-Wen, Zhang Shuang-Hao, Feng Xiao-Yi, Zhao Guang, Chai Geng, Li Dong-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the safety assessment of the actual CVQKD (continuous-variable quantum key distribution) system,the preparation measurement model is generally equivalent to the entanglement-based model,whose major drawback is that the shot noise variance is treated as a constant.As the attacks on the LO (local oscillator) from the Eve,the shot noise variance will change with LO.And in the process of safety analysis based on the shot noise variance calibration technology,there are loopholes in which the shot noise variance for calculating secret key rate is obtained by the linear relationship between the shot noise variance and the LO before distributing the quantum key.However,the shot noise variance is not accurate nor real-time.In the security analysis of system,all the noise parameters of the system are normalized to the shot noise variance.The Eve can reduce the shot noise variance by controlling the strength of LO,thus actual excess noise of system will increase.But legal communicating parties are still normalized based on previous larger shot noise variance,so that the excess noise of system is substantially underestimated.As a consequence,the Eve can obtain secret key information without attracting the attention of legal communicating parties by adopting some attacks, such as intercept-resend attack.Thus it is an essential factor for ensuring the system security to evaluate real-time shot noise variance accurately.In order to effectively resist the above mentioned attacks on the LO from the Eve,a scheme of CVQKD system based on real-time shot noise variance monitoring is presented to improve the security of CVQKD system.The shot noise variance calibration technology is adopted in this system.By adding the real-time shot noise variance monitoring modules to the primary CVQKD system,the real-time shot noise variance is assessed by the linear relationship between the shot noise variance and the LO.In the hardware system,independent clocks are adopted. Sampling in peak algorithm is applied to software system,and this effectively solves the problem that CVQKD system with LO clock source is at risk of shot noise variance calibration attack.The scheme prevents the hazards that the Eve changes previously calibrated linear relationship by regulating the pulse delay of the LO,and thus judges whether the system is safe through calculating the accurate and real-time secret key rate.The system can analyze the real-time security of quantum key distribution and display safety status of system.The experimental results show that this system can defend effectively the LO attacks from the Eve and improve the security performance of the CVQKD system.
      Corresponding author: Cao Zheng-Wen, caozhw@nwu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM8036) and the 211 Project of Innovative Talents Training in 12th Five-Year, China (Grant No. YZZ15100).
    [1]

    Zeng G H 2006 Quantum Cryptography (Beijing:Science Press) pp128-132(in Chinese)[曾贵华2006量子密码学(北京:科学出版社)第128–132页]

    [2]

    Scarani V, Bechmann P H, Cerf N J, Dusek M, Ltkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301

    [3]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902

    [4]

    Zeng G H 2010 Quantum Private Communication (Berlin:Springer-Verlag) pp289-297

    [5]

    Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C, Lam P K 2004 Phys. Rev. Lett. 93 170504

    [6]

    Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C, Lam P K 2005 Phys. Rev. Lett. 95 180503

    [7]

    Shen Y, Zou H, Tian L, Chen P, Yuan J 2010 Phys. Rev. A 82 022317

    [8]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504

    [9]

    Shen Y, Zou H X 2010 Acta Phys. Sin. 59 1473 (in Chinese)[沈咏, 邹宏新2010 59 1473]

    [10]

    Leverrier A, Grangier P 2011 Phys. Rev. A 83 042312

    [11]

    Lodewyck J, Debuisschert T, Tualle B R, Grangier P 2005 Phys. Rev. A 72 050303

    [12]

    Lodewyck J, Bloch M, García P R, Fossier S, Karpov E, Diamanti E, Grangier P 2007 Phys. Rev. A 76 042305

    [13]

    Fossier S, Diamanti E, Debuisschert T, Tualle B R, Grangier P 2009 J. Phys. B 42 114014

    [14]

    Xu Y W, Zeng L B, Shao F W, Yong M L, Kun C P 2013 Chin. Phys. Lett. 30 010305

    [15]

    Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P 2008 Phys. Rev. A 77 042325

    [16]

    Jouguet P, Kunz J S, Leverrier A 2011 Phys. Rev. A 84 062317

    [17]

    Jouguet P, Kunz J S, Leverrier A, Grangier P, Diamanti E 2013 Nature Photon. 7 378

    [18]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201

    [19]

    Jouguet P, Kunz J S, Diamanti E 2013 Phys. Rev. A 87 062313

    [20]

    Grosshans F, van Assche G, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238

    [21]

    Navascués M, Grosshans F, Acin A 2006 Phys. Rev. Lett. 97 190502

    [22]

    Garcia P R, Cerf N J 2006 Phys. Rev. Lett. 97 190503

    [23]

    Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905

    [24]

    Holevo A S 1998 IEEE Trans. Inf. Theory 44 269

  • [1]

    Zeng G H 2006 Quantum Cryptography (Beijing:Science Press) pp128-132(in Chinese)[曾贵华2006量子密码学(北京:科学出版社)第128–132页]

    [2]

    Scarani V, Bechmann P H, Cerf N J, Dusek M, Ltkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301

    [3]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902

    [4]

    Zeng G H 2010 Quantum Private Communication (Berlin:Springer-Verlag) pp289-297

    [5]

    Weedbrook C, Lance A M, Bowen W P, Symul T, Ralph T C, Lam P K 2004 Phys. Rev. Lett. 93 170504

    [6]

    Lance A M, Symul T, Sharma V, Weedbrook C, Ralph T C, Lam P K 2005 Phys. Rev. Lett. 95 180503

    [7]

    Shen Y, Zou H, Tian L, Chen P, Yuan J 2010 Phys. Rev. A 82 022317

    [8]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504

    [9]

    Shen Y, Zou H X 2010 Acta Phys. Sin. 59 1473 (in Chinese)[沈咏, 邹宏新2010 59 1473]

    [10]

    Leverrier A, Grangier P 2011 Phys. Rev. A 83 042312

    [11]

    Lodewyck J, Debuisschert T, Tualle B R, Grangier P 2005 Phys. Rev. A 72 050303

    [12]

    Lodewyck J, Bloch M, García P R, Fossier S, Karpov E, Diamanti E, Grangier P 2007 Phys. Rev. A 76 042305

    [13]

    Fossier S, Diamanti E, Debuisschert T, Tualle B R, Grangier P 2009 J. Phys. B 42 114014

    [14]

    Xu Y W, Zeng L B, Shao F W, Yong M L, Kun C P 2013 Chin. Phys. Lett. 30 010305

    [15]

    Leverrier A, Alléaume R, Boutros J, Zémor G, Grangier P 2008 Phys. Rev. A 77 042325

    [16]

    Jouguet P, Kunz J S, Leverrier A 2011 Phys. Rev. A 84 062317

    [17]

    Jouguet P, Kunz J S, Leverrier A, Grangier P, Diamanti E 2013 Nature Photon. 7 378

    [18]

    Huang D, Huang P, Lin D, Zeng G 2016 Sci. Rep. 6 19201

    [19]

    Jouguet P, Kunz J S, Diamanti E 2013 Phys. Rev. A 87 062313

    [20]

    Grosshans F, van Assche G, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238

    [21]

    Navascués M, Grosshans F, Acin A 2006 Phys. Rev. Lett. 97 190502

    [22]

    Garcia P R, Cerf N J 2006 Phys. Rev. Lett. 97 190503

    [23]

    Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905

    [24]

    Holevo A S 1998 IEEE Trans. Inf. Theory 44 269

  • [1] Zhang Yun-Jie, Wang Xu-Yang, Zhang Yu, Wang Ning, Jia Yan-Xiang, Shi Yu-Qi, Lu Zhen-Guo, Zou Jun, Li Yong-Min. Four-state discrete modulation continuous variable quantum key distribution based on hardware synchronization. Acta Physica Sinica, 2024, 73(6): 060302. doi: 10.7498/aps.73.20231769
    [2] Zhang Guang-Wei, Bai Jian-Dong, Jie Qi, Jin Jing-Jing, Zhang Yong-Mei, Liu Wen-Yuan. Research on dynamic polarization control in continuous variable quantum key distribution systems. Acta Physica Sinica, 2024, 73(6): 060301. doi: 10.7498/aps.73.20231890
    [3] Liao Qin, Liu Hai-Jie, Wang Zheng, Zhu Ling-Jin. Gaussian-modulated continuous-variable quantum key distribution based on untrusted entanglement source. Acta Physica Sinica, 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [4] Mao Yi-Yu, Wang Yi-Jun, Guo Ying, Mao Yu-Hao, Huang Wen-Ti. Continuous-variable quantum key distribution based on peak-compensation. Acta Physica Sinica, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [5] Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun. Discrete modulation continuous-variable quantum key distribution based on quantum catalysis. Acta Physica Sinica, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [6] Song Zhi-Jun, Lü Zhao-Zheng, Dong Quan, Feng Jun-Ya, Ji Zhong-Qing, Jin Yong, Lü Li. Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures. Acta Physica Sinica, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [7] Yan Zhi-Meng, Wang Jing, Guo Jian-Hong. Low-bias oscillations of shot noise as signatures of Majorana zero modes. Acta Physica Sinica, 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [8] Xu Bing-Jie, Tang Chun-Ming, Chen Hui, Zhang Wen-Zheng, Zhu Fu-Chen. Improving the maximum transmission distance of coutinuous variable no-switching QKD protocol. Acta Physica Sinica, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [9] Jia Xiao-Fei, Du Lei, Tang Dong-He, Wang Ting-Lan, Chen Wen-Hao. Research on shot noise suppression in quasi-ballistic transport nano-mOSFET. Acta Physica Sinica, 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [10] Zhuang Yi-Qi, Bao Jun-Lin, Sun Peng, Wang Ting-Lan, Chen Wen-Hao, Du Lei, He Liang, Chen Hua. Shot noise measurement methods in electronic devices. Acta Physica Sinica, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [11] Shen Yong, Zou Hong-Xin. Security bound of continuous-variable quantum key distribution with discrete modulation. Acta Physica Sinica, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [12] Liang Zhi-Peng, Dong Zheng-Chao. Shot noise in the semiconductor/ferromagnetic d-wave superconductor tunnel junction. Acta Physica Sinica, 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [13] Shi Zhen-Gang, Wen Wei, Chen Xiong-Wen, Xiang Shao-Hua, Song Ke-Hui. Shot noise spectrum of a double quantum dot charge qubit. Acta Physica Sinica, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [14] Zhu Chang-Hua, Chen Nan, Pei Chang-Xing, Quan Dong-Xiao, Yi Yun-Hui. Adaptive continuous variable quantum key distribution based on channel estimation. Acta Physica Sinica, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [15] Chen Hua, Du Lei, Zhuang Yi-Qi. Monte Carlo simulation of shot noise in the coherent and mesoscopic system. Acta Physica Sinica, 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [16] Zhang Zhi-Yong, Wang Tai-Hong. Luttinger parameter of carbon nanotubes investigated by shot noise experiment. Acta Physica Sinica, 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [17] Dong Zheng-Chao. . Acta Physica Sinica, 2002, 51(4): 894-897. doi: 10.7498/aps.51.894
    [18] DONG ZHENG-CHAO, XING DING-YU, DONG JIN-MING. SHOT NOISE IN FERROMAGNET-SUPERCONDUCTOR TUNNELING JUNCTION. Acta Physica Sinica, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [19] ZHU ZHU-XIANG, ZHENG DA-FANG, LIU YOU-YAN. SPECTRAL DENSITY FOR THE TUNNELING CURRENT ZERO-FREQUENCY SHOT-NOISE IN A ONE-DIMENTIONAL MESOSCOPIC SYSTEM. Acta Physica Sinica, 1999, 48(2): 302-313. doi: 10.7498/aps.48.302
    [20] TSCHEN DSIN-GUANG. SCHROTRAUSCHEN UND THERMISCHES RAUSCHEN IN EINER P-N-FLACHENDIODE. Acta Physica Sinica, 1965, 21(2): 383-389. doi: 10.7498/aps.21.383
Metrics
  • Abstract views:  6207
  • PDF Downloads:  243
  • Cited By: 0
Publishing process
  • Received Date:  15 August 2016
  • Accepted Date:  02 November 2016
  • Published Online:  20 January 2017

/

返回文章
返回
Baidu
map