Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation and independent-manipulation of multi-channel high-capacity perfect vector vortex beams based on geometric metasurfaces

ZHANG Shenglan TIAN Ximin XU Junwei XU Yaning LI Liang LIU Jielong

Citation:

Generation and independent-manipulation of multi-channel high-capacity perfect vector vortex beams based on geometric metasurfaces

ZHANG Shenglan, TIAN Ximin, XU Junwei, XU Yaning, LI Liang, LIU Jielong
cstr: 32037.14.aps.74.20241725
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Perfect vector vortex beams (PVVBs), which are characterized by spiral phase, donut-shaped intensity profile and inhomogeneous polarization of a light beam carrying spin angular momentum (SAM) and orbital angular momentum (OAM), have a constant bright ring radius and ring width which are unaffected by the changes of their carrying topological charge (TC), thus making them highly valuable in many optical fields. Metasurfaces, as planar optical devices composed of subwavelength nanostructures, can precisely control the phase, polarization, and amplitude of electromagnetic waves, providing a revolutionary solution for integrated vector field manipulation devices. However, existing metasurfaces still encounter significant challenges in generating high-capacity, polarization- and orbital angular momentum-independent controlled perfect vector vortex beams. In order to solve this problem, in this work a spin-multiplexing scheme based on pure geometric phase modulation on a metasurface platform is used to achieve high-capacity polarization- and OAM-independent controlled PVVBs. The metasurfaces with a combined phase profile of a spiral phase plate, an axicon, and a focusing (Fourier) lens are spatially encoded by rectangular Ge2Sb2Se4Te1 (GSST) nanopillar with various orientations on a CaF2 square substrate. When illuminated by circularly polarized light with opposite chirality, the metasurfaces can generate various perfect vector vortex beams (PVBs) with arbitrary topological charges. For linearly polarized incidence, the metasurface is employed to induce PVVBs by coherently superposing PVBs with spin-opposite OAM modes. The polarization states and polarization orders of the generated PVVBs can be flexibly customized by controlling the initial phase difference, amplitude ratio, and topological charges of the two orthogonal PVB components. Notably, through precisely designing the metasurface’s phase distribution and the propagation path of the generated beams, the space and polarization multiplexing can be realized in a compact manner of spatial PVVB arrays, significantly increasing both information channels and dimensions for the development of vortex communication capacity. With these findings, we demonstrate an innovative optical information encryption scheme by using a single metasurface to encode personalized polarization states and OAM in parallel channels embedded within multiple PVVBs. This work aims to establish an ultra-compact, robust platform for generating multi-channel high-capacity polarization- and OAM-independent controlled PVVBs in the mid-infrared range, and promote their applications in optical encryption, particle manipulation, and quantum optics.
      Corresponding author: TIAN Ximin, xmtian007@zua.edu.cn ; XU Junwei, xujunwei001@zua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004347), the Scientific and Technological Project in Henan Province, China (Grant Nos. 242102211081, 232102320057), the Youth Backbone Project in Henan Province, China (Grant No. 2023GGJS113), the Key Scientific Research Projects of Colleges and Universities in Henan Province, China (Grant Nos. 24A140025, 25B140009), and the Aeronautical Science Foundation of China (Grant No. 2020Z073055002).
    [1]

    Guo Y H, Zhang S C, Pu M B, He Q, Jin J J, Xu M F, Zhang Y X, Gao P, Luo X G 2021 Light: Sci. Appl. 10 63Google Scholar

    [2]

    Shen Y J, Yang X L, Naidoo D, Fu X, Forbes A 2020 Optica 7 820Google Scholar

    [3]

    Liu Z X, Liu Y Y, Ke Y G, Liu Y C, Shu W X, Luo H L, Wen S C 2016 Photonics Res. 5 15Google Scholar

    [4]

    Liu M Z, Huo P C, Zhu W Q, Zhang C, Zhang S, Song M W, Zhang S, Zhou Q W, Chen L, Lezec H 2021 Nat. Commun. 12 2230Google Scholar

    [5]

    Xu Y N, Tian X M, Xu J W, Zhang S L, Huang Y F, Li L, Liu J L, Xu K, Yu Z J, Li Z Y 2024 J. Phys. D: Appl. Phys. 57 425104Google Scholar

    [6]

    Ma Y B, Rui G H, Gu B, Cui Y P 2017 Sci. Rep. 7 14611Google Scholar

    [7]

    Shao W, Huang S J, Liu X P, Chen M S 2018 Opt. Commun. 427 545Google Scholar

    [8]

    Xu Y, Su X R, Chai Z, Li J L 2024 Laser Photon. Rev. 18 2300355Google Scholar

    [9]

    Niv A A, Biener G, Kleiner V, Hasman E 2006 Opt. Express 14 4208Google Scholar

    [10]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013 Opt. Lett. 38 534Google Scholar

    [11]

    Vaity P, Rusch L 2015 Opt. Lett. 40 597Google Scholar

    [12]

    Li D L, Feng S T, Nie S P, Chang C L, Ma J, Yuan C J 2019 J. Appl. Phys. 125 073105Google Scholar

    [13]

    Zou X J, Zheng G G, Yuan Q, Zang W B, Chen R, Li T Y, Li L, Wang S M, Wang Z L, Zhu S N 2020 PhotoniX 1 1Google Scholar

    [14]

    Zhang C Y, Zhang B F, Ge S K, Han C X, Wang S Z, Han Q Y, Gao W, Chu T S, Dong J, Zhang M D 2024 Opt. Express 32 31359Google Scholar

    [15]

    Zhang X L, Gong Y H, Li M, Li H 2024 Opt. Express 32 8069Google Scholar

    [16]

    Kim I, Ansari M A, Mehmood M Q, Kim W Q, Jang J, Zubair M, Kim Y K, Rho J 2020 Adv. Mater. 32 2004664Google Scholar

    [17]

    Huang Y F, Tian X M, Zhang S L, Xu Y N, Xu J W, Yu Z J, Jiang T, Li Z Y 2024 Opt. Lasers Eng. 183 108523Google Scholar

    [18]

    He H R, Peng M Y, Cao G T, Li Y B, Liu H, Yang H 2024 Opt. Laser Technol. 180 111555Google Scholar

    [19]

    Liu Y C, Ke Y G, Zhou J X, Liu Y Y, Luo H L, Wen S C, Fan D Y 2017 Sci. Rep. 7 44096Google Scholar

    [20]

    Zhang Y C, Liu W W, Gao J, Yang X D 2018 Adv. Opt. Mater. 6 1701228Google Scholar

    [21]

    Tian S N, Qian, Z H, Guo H M 2022 Opt. Express 30 21808Google Scholar

    [22]

    Liu Y, Zhou C X, Guo K L, Wei Z C, Liu H Z 2022 Opt. Express 30 30881Google Scholar

    [23]

    Vogliardi A, Ruffato G, Bonaldo D, Zilio S D, Romanato F 2023 Opt. Lett. 48 4925Google Scholar

    [24]

    Gu M N, Cheng C, Zhan Z J, Zhang Z H, Cui G S, Zhou Y X, Zeng X Y, Gao S, Choi D Y, Cheng C F 2024 ACS Photonics 11 204Google Scholar

    [25]

    He J N, Wan M L, Zhang X P, Yuan S Q, Zhang L F, Wang J Q 2022 Opt. Express 30 4806Google Scholar

    [26]

    Zhou T, Liu Q, Liu Y S, Zang X F 2020 Opt. Lett. 45 5941Google Scholar

    [27]

    Huang K, Deng J, Leong H S, Yap S L K, Yang R B, Teng J H, Liu H 2019 Laser Photonics Rev. 13 1800289Google Scholar

    [28]

    Xie J F, Guo H M, Zhuang S L, Hu J B 2021 Opt. Express 29 3081Google Scholar

    [29]

    Zhang Z H, Li T, Jiao X F, Song G F, Xu Y 2020 Appl. Sci. 10 5716Google Scholar

  • 图 1  (a)基于超构表面生成多通大容量PVVBs的效果示意图; (b) HyOPS模型; (c) 螺旋相位、锥透镜相位和双曲透镜相位叠加而成的超构表面相位剖面

    Figure 1.  (a) Schematic illustration of the metasurface-enabled generation of multi-channel high-capacity PVVBs; (b) the HyOPS model; (c) the phase profile of the metasurface obtained by combining the phases of a spiral phase plate, an axicon, and a hyperbolic metalens.

    图 2  (a) 基于纯几何相位调制的自旋多路复用超构表面生成PVVB原理图; (b)最优单元结构在不同波长x-, y-LP光入射下的透射率(Txx, Tyy)和相移(ϕxx, ϕyy); (c) 超构原子在波长为4.4 μm x-LP、和y-LP光入射下产生的磁场HyHx分布剖面图; (d) 当GSST纳米柱处于不同旋向角时, 最优单元结构在圆偏振光入射下的透射率和相移, 插图为纳米柱单元结构透视图和俯视图

    Figure 2.  (a) Operating principle for generating multi-channel high-capacity PVVBs by using a spin-multiplexed metasurface based on pure geometric phase modulation; (b) simulated transmission (Txx, Tyy) and phase shift (ϕxx, ϕyy) of the optimized unit cell under x- and y-polarized illumination at different wavelengths; (c) magnetic components Hy and Hx existing in GSST nanopillar excited by x-polarized and y-polarized incident light of λ = 4.4 μm; (d) calculated transmission and phase shift of the optimized unit cell under circularly polarized illumination as a function of the rotation angle of the anisotropic GSST nanopillars, with insets showing the perspective and top views of unit cells.

    图 3  x-LP光照射下, (a) 4种模式PVVBs在x-z平面上电场强度分布; (b)在焦平面上电场强度分布曲线; (c)在焦平面上亮环半径; (d)在z = 140, 200和260 μm三个横截面上的亮环半径; (e)在焦平面上的亮环宽度; (f)转化效率; (g)在HyOPS上位置分布; (h) x-LP光照射下, 4种模式PVVBs在不同偏振片下对应的电场强度分布, 斯托克斯参数(S0, S1, S2S3)及偏振方向(Ω)

    Figure 3.  Under x-LP illumination, (a) the electric field intensity distributions of the four mode PVVBs in the x-z plane; (b) the intensity profiles at the focal plane; (c) the radii of the bright rings at the focal plane; (d) the radii of the bright rings at z = 140, 200 and 260 μm cross-sections; (e) the widths of the bright rings at the focal plane; (f) conversion efficiency; (g) their spatial distributions on the HyOPS; (h) under x-LP illumination, the electric field intensity distributions, Stokes parameters (S0, S1, S2 and S3) and polarization orientations (Ω) of the four mode PVVBs under different polarizers.

    图 4  超构表面MF5在LCP光下生成RCP PVBs阵列的电场强度分布图(a)及在LP光下生成的32重PVVBs Ex分布图(b)和Ey分布图(c); (d)对应模式PVVBs的矢量场分布和偏振角度分布; (e) PVVBs代码表; (f) 编码方法和编码表; (g) 105个包含两字节的十六进制数序列; (h), (i)解密的文本信息

    Figure 4.  Electric field intensity distributions of the RCP PVB array generated by the metasurface MF5 under LCP illumination (a), and Ex (b) and Ey (c) intensity distributions of 32-fold PVVBs generated by the metasurface MF5 under LP illumination; (d) vector field distributions and polarization orientation of the corresponding mode PVVBs; (e) codebook of the PVVBs; (f) encoding method and the encoding diagram; (g) a sequence of 105 hexadecimal numbers consisting of two bytes; (h), (i) the decrypted text information.

    表 1  Mode 1—4 PVVBs对应的具体参数

    Table 1.  Specific parameters of the mode 1–4 PVVBs.

    ModeMNlnlm(∆x, y)/μmf/μmδ
    12∶1–11(0, 0)2000
    21∶2–33(0, 0)200π/2
    31∶13–3(0, 0)200π
    41∶1–66(0, 0)2003π/2
    DownLoad: CSV

    表 2  MF5的具体参数

    Table 2.  Specific parameters of the MF5.

    SCslnlmx/μmy/μmf/μmδ
    11–89–150350200π/15
    21/8–12–503502007π/15
    31/4–445035020010π/15
    41–881503502002π/15
    51/2–56–15025020015π/15
    61/2–66–502502006π/15
    71/8–11502502000
    81/8–2215025020014π/15
    91/4–33–1501502009π/15
    101/2–55–501502008π/15
    111/2–67501502005π/15
    121/8–2315015020013π/15
    131–78–150502003π/15
    141/4–34–505020012π/15
    151/4–45505020011π/15
    161–77150502004π/15
    171/8–11–150–5030012π/15
    181/4–44–50–503003π/15
    191/4–4550–503002π/15
    201/8–12150–503008π/15
    211/2–56–150–15030014π/15
    221/8–23–50–1503005π/15
    231/2–6650–1503006π/15
    241/2–55150–1503007π/15
    251–77–150–250300π/15
    261–78–50–2503004π/15
    271–8950–25030011π/15
    281/8–22150–25030014π/15
    291/4–33–150–35030010π/15
    301–88–50–35030015π/15
    311/2–6750–35030013π/15
    321/4–34150–3503009π/15
    DownLoad: CSV
    Baidu
  • [1]

    Guo Y H, Zhang S C, Pu M B, He Q, Jin J J, Xu M F, Zhang Y X, Gao P, Luo X G 2021 Light: Sci. Appl. 10 63Google Scholar

    [2]

    Shen Y J, Yang X L, Naidoo D, Fu X, Forbes A 2020 Optica 7 820Google Scholar

    [3]

    Liu Z X, Liu Y Y, Ke Y G, Liu Y C, Shu W X, Luo H L, Wen S C 2016 Photonics Res. 5 15Google Scholar

    [4]

    Liu M Z, Huo P C, Zhu W Q, Zhang C, Zhang S, Song M W, Zhang S, Zhou Q W, Chen L, Lezec H 2021 Nat. Commun. 12 2230Google Scholar

    [5]

    Xu Y N, Tian X M, Xu J W, Zhang S L, Huang Y F, Li L, Liu J L, Xu K, Yu Z J, Li Z Y 2024 J. Phys. D: Appl. Phys. 57 425104Google Scholar

    [6]

    Ma Y B, Rui G H, Gu B, Cui Y P 2017 Sci. Rep. 7 14611Google Scholar

    [7]

    Shao W, Huang S J, Liu X P, Chen M S 2018 Opt. Commun. 427 545Google Scholar

    [8]

    Xu Y, Su X R, Chai Z, Li J L 2024 Laser Photon. Rev. 18 2300355Google Scholar

    [9]

    Niv A A, Biener G, Kleiner V, Hasman E 2006 Opt. Express 14 4208Google Scholar

    [10]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013 Opt. Lett. 38 534Google Scholar

    [11]

    Vaity P, Rusch L 2015 Opt. Lett. 40 597Google Scholar

    [12]

    Li D L, Feng S T, Nie S P, Chang C L, Ma J, Yuan C J 2019 J. Appl. Phys. 125 073105Google Scholar

    [13]

    Zou X J, Zheng G G, Yuan Q, Zang W B, Chen R, Li T Y, Li L, Wang S M, Wang Z L, Zhu S N 2020 PhotoniX 1 1Google Scholar

    [14]

    Zhang C Y, Zhang B F, Ge S K, Han C X, Wang S Z, Han Q Y, Gao W, Chu T S, Dong J, Zhang M D 2024 Opt. Express 32 31359Google Scholar

    [15]

    Zhang X L, Gong Y H, Li M, Li H 2024 Opt. Express 32 8069Google Scholar

    [16]

    Kim I, Ansari M A, Mehmood M Q, Kim W Q, Jang J, Zubair M, Kim Y K, Rho J 2020 Adv. Mater. 32 2004664Google Scholar

    [17]

    Huang Y F, Tian X M, Zhang S L, Xu Y N, Xu J W, Yu Z J, Jiang T, Li Z Y 2024 Opt. Lasers Eng. 183 108523Google Scholar

    [18]

    He H R, Peng M Y, Cao G T, Li Y B, Liu H, Yang H 2024 Opt. Laser Technol. 180 111555Google Scholar

    [19]

    Liu Y C, Ke Y G, Zhou J X, Liu Y Y, Luo H L, Wen S C, Fan D Y 2017 Sci. Rep. 7 44096Google Scholar

    [20]

    Zhang Y C, Liu W W, Gao J, Yang X D 2018 Adv. Opt. Mater. 6 1701228Google Scholar

    [21]

    Tian S N, Qian, Z H, Guo H M 2022 Opt. Express 30 21808Google Scholar

    [22]

    Liu Y, Zhou C X, Guo K L, Wei Z C, Liu H Z 2022 Opt. Express 30 30881Google Scholar

    [23]

    Vogliardi A, Ruffato G, Bonaldo D, Zilio S D, Romanato F 2023 Opt. Lett. 48 4925Google Scholar

    [24]

    Gu M N, Cheng C, Zhan Z J, Zhang Z H, Cui G S, Zhou Y X, Zeng X Y, Gao S, Choi D Y, Cheng C F 2024 ACS Photonics 11 204Google Scholar

    [25]

    He J N, Wan M L, Zhang X P, Yuan S Q, Zhang L F, Wang J Q 2022 Opt. Express 30 4806Google Scholar

    [26]

    Zhou T, Liu Q, Liu Y S, Zang X F 2020 Opt. Lett. 45 5941Google Scholar

    [27]

    Huang K, Deng J, Leong H S, Yap S L K, Yang R B, Teng J H, Liu H 2019 Laser Photonics Rev. 13 1800289Google Scholar

    [28]

    Xie J F, Guo H M, Zhuang S L, Hu J B 2021 Opt. Express 29 3081Google Scholar

    [29]

    Zhang Z H, Li T, Jiao X F, Song G F, Xu Y 2020 Appl. Sci. 10 5716Google Scholar

  • [1] SHI Pengbo, YANG Chen, YIN Xiaojin, WANG Jie. Capture of Rayleigh particles by focused double-ring perfect vortex beams. Acta Physica Sinica, 2025, 74(8): . doi: 10.7498/aps.74.20241768
    [2] GAO Yujie, LI Jinhong, WANG Jing, LIU Jinhong, YIN Xiaojin. Full vector properties of angular momentum of cylindrical vector vortex beam propagating in free space. Acta Physica Sinica, 2025, 74(5): 059202. doi: 10.7498/aps.74.20241344
    [3] Zhang Zhuo, Zhang Jing-Feng, Kong Ling-Jun. Orbital angular momentum splitter of light based on beam displacer. Acta Physica Sinica, 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [4] Xu Meng-Min, Li Xiao-Qing, Tang Rong, Ji Xiao-Ling. Influence of wind-dominated thermal blooming on orbital angular momentum and phase singularity of dual-mode vortex beams. Acta Physica Sinica, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [5] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [7] Jiang Ji-Heng, Yu Shi-Xing, Kou Na, Ding Zhao, Zhang Zheng-Ping. Beam steering of orbital angular momentum vortex wave based on planar phased array. Acta Physica Sinica, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian. Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber. Acta Physica Sinica, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [9] Fu Shi-Yao, Gao Chun-Qing. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings. Acta Physica Sinica, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [10] Ke Xi-Zheng, Chen Juan, Yang Yi-Ming. Study on orbital angular momentum of Laguerre-Gaussian beam in a slant-path atmospheric turbulence. Acta Physica Sinica, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [11] Li Tie, Chen Juan, Ke Xi-Zheng. Study of orbital angular momentum entangled photons entanglement in atmospheric channel. Acta Physica Sinica, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [12] Qi Xiao-Qing, Gao Chun-Qing, Xin Jing-Tao, Zhang Ge. Experimental study of 8-bits information transmission system based on orbital angular momentum of light beams. Acta Physica Sinica, 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [13] Qi Xiao-Qing, Gao Chun-Qing. Experimental study of detecting orbital angular momentumstates of spiral phase beams. Acta Physica Sinica, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [14] Ke Xi-Zheng, Nu Ning, Yang Qin-Ling. Research of transmission characteristics of single-photon orbital angular momentum. Acta Physica Sinica, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [15] Chen Xiao-Yi, Li Hai-Xia, Song Hong-Sheng, Teng Shu-Yun, Cheng Chuan-Fu, Liu Man. Measurement of orbital angular momentum of Laguerre-Gaussian beam by using phase vortices of interference fields. Acta Physica Sinica, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [16] Lü Hong, Ke Xi-Zheng. Scattering of a beam with orbital angular momentum by a single sphere. Acta Physica Sinica, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [17] Su Zhi-Kun, Wang Fa-Qiang, Lu Yi-Qun, Jin Rui-Bo, Liang Rui-Sheng, Liu Song-Hao. Study on quantum cryptography using orbital angular momentum states of photons. Acta Physica Sinica, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [18] Gao Ming-Wei, Gao Chun-Qing, Lin Zhi-Feng. Generation of twisted stigmatic beam and transfer of orbital angular momentum during the beam transformation. Acta Physica Sinica, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [19] Dong Yi-Ming, Xu Yun-Fei, Zhang Zhang, Lin Qiang. The experimental investigation of orbital angular momentum of complex astigmatic elliptical beams. Acta Physica Sinica, 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [20] Gao Ming-Wei, Gao Chun-Qing, He Xiao-Yan, Li Jia-Ze, Wei Guang-Hui. Rotation of particles by using the beamwith orbital angular momentum. Acta Physica Sinica, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
Metrics
  • Abstract views:  819
  • PDF Downloads:  46
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2024
  • Accepted Date:  08 January 2025
  • Available Online:  17 January 2025
  • Published Online:  20 March 2025

/

返回文章
返回
Baidu
map