Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dissociation mechanism of ethane dication via three-body fragmentation

ZHANG Ziqi YAN Shuncheng TAO Chenyu YU Xuan ZHANG Shaofeng MA Xinwen

Citation:

Dissociation mechanism of ethane dication via three-body fragmentation

ZHANG Ziqi, YAN Shuncheng, TAO Chenyu, YU Xuan, ZHANG Shaofeng, MA Xinwen
cstr: 32037.14.aps.74.20250008
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Molecular ions are widely distributed in the ionosphere of planetary atmospheres, and their fragmentations can generate different ions and neutral fragments. Studying the kinetic energy distribution and generation mechanism of the final products is helpful in understanding fundamental phenomena in astrophysics and plasma physics. In particular, ethane is an important molecule found in Titan and comet, and its fragmentation may be involved in the generation of complex hydrocarbons, as well as the atmospheric escape processes on Titan.In this paper, the experiment on ethane fragmentation by electron impact is carried out, focusing on the three-body fragmentation channel from $ {{\text{C}}_2}{\text{H}}_6^{2 + } $ to $ {\text{CH}}_3^ + /{\text{CH}}_2^ + /{\text{H}} $. The three-dimensional momenta of $ {\text{CH}}_3^ + $ and $ {\text{CH}}_2^ + $ ions are measured, and then the momentum of the H atom is reconstructed using momentum conservation law. Based on these analyses, the kinetic energy release (KER) spectrum and the fragmentation mechanisms are investigated.The time-of-flight (TOF) coincidence map of the ions shows two channels: channel (1) that represents the two-body dissociation generating $ {\text{CH}}_3^ + $/$ {\text{CH}}_3^ + $, and channel (2) that refers to the three-body dissociation generating $ {\text{CH}}_3^ + /{\text{CH}}_2^ + /{\text{H}} $. It is found that the neutral H from channel (2) has a wide kinetic energy distribution, ranging from 0 eV to more than 10 eV. This feature indicates that the dissociation of the C-H bond is from multiple electronic states. Since the escape threshold of H in Titan’s ionosphere is 0.02 eV, the vast majority of the H atoms produced in channel (2) can escape into outer space. In addition, the kinetic energy sum of $ {\text{CH}}_3^ + $ and $ {\text{CH}}_2^ + $ in channel (2) is found to be similar to the KER of channel (1), indicating that the C-H dissociation presents limited influence on the energy sum of the CH2+ and $ {\text{CH}}_3^ + $.The corresponding fragmentation mechanism of channel (2) is also analyzed in this work. the overall KER spectrum is divided into three parts: 0–6 eV, 6–9 eV, and 9–11 eV, and the respective Dalitz plots and Newton diagrams are reconstructed under different KER conditions. In all Dalitz plots, there are a bright spot representing the concerted dissociation and a horizontal belt representing the sequential dissociation. The concerted dissociation is considered as the main mechanism, while the sequential dissociation plays a secondary role.The bright spot in the Dalitz plot shifts from the center to the left as the KER increases. This feature arises from the fact that the $ {\text{CH}}_2^ + $ lies between the H and the $ {\text{CH}}_3^ + $ in the concerted dissociation, and it feels the recoil both from H and from $ {\text{CH}}_3^ + $. Considering that the Coulomb potential from $ {\text{CH}}_3^ + $ is constant, the increase of the C-H dissociation energy will reduce the $ {\text{CH}}_2^ + $ kinetic energy. The belt in the Dalitz indicates that the sequential dissociation is a two-step process, with the first step being the dissociation of $ {{\text{C}}_2}{\text{H}}_6^{2 + } $ to generate H and metastable $ {{\text{C}}_2}{\text{H}}_5^{2 + } $, and the second step being the fragmentation of $ {{\text{C}}_2}{\text{H}}_5^{2 + } $ into $ {\text{CH}}_3^ + $ and $ {\text{CH}}_2^ + $.The Newton diagrams under different KER conditions are also reconstructed to give further evidence of the sequential dissociation from the metastable $ {{\text{C}}_2}{\text{H}}_5^{2 + } $, rather than from the metastable $ {\text{CH}}_3^ + $ or $ {\text{CH}}_4^ + $. In fact, for the former case, the center positions of the two half circles in the Newton diagram are correct. Oppositely, for the latter two cases, the center positions notably deviate from the expected values. This means the sequential dissociation from $ {{\text{C}}_2}{\text{H}}_5^{2 + } $ is dominant, which agrees excellently with the conclusion from the Dalitz plots.
      Corresponding author: YAN Shuncheng, yanshuncheng@impcas.ac.cn ; MA Xinwen, x.ma@impcas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602500), the Strategic Priority Research Program (B) of Chinese Academy of Science (Grant No. XDB34020000), and the Foundation of “Young Scholars in Western China” of the Chinese Academy of Sciences.
    [1]

    Mathur D 2004 Phys. Rep. 391 1Google Scholar

    [2]

    Adoui L, Muranaka T, Tarisien M, Legendre S, Laurent G, Cassimi A, Chesnel J Y, Fléchard X, Frémont F, Gervais B, Giglio E, Hennecart D 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 245 94Google Scholar

    [3]

    Aitelhadjali Z, Kessal S, Quinto M A, Oubaziz D, Champion C 2016 Int. J. Mass Spectrom. 403 53Google Scholar

    [4]

    Shen Z J, Wang E L, Gong M M, Shan X, Chen X J 2016 J. Chem. Phys. 145 234303Google Scholar

    [5]

    Chen L, Wang E L, Shan X, Shen Z J, Zhao X, Chen X J 2021 Phys. Rev. A 104 032814Google Scholar

    [6]

    Jiang T, Wang B, Zhang Y, Wei L, Chen S, Yu W, Zou Y, Chen L, Wei B 2019 Phys. Rev. A 100 022705Google Scholar

    [7]

    Duley A, Kelkar A H 2023 Atoms 11 75Google Scholar

    [8]

    Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 Phys. Rev. A 90 062705Google Scholar

    [9]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303Google Scholar

    [10]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [11]

    Wei L, Chen S, Zhang Y, Wang B, Yu W, Ren B, Han J, Zou Y, Chen L, Wei B 2020 Eur. Phys. J. D 74 133Google Scholar

    [12]

    Das N, De S, Bhatt P, Safvan C P, Majumdar A 2023 J. Chem. Phys. 158 084307Google Scholar

    [13]

    Yuan H, Xu S, Wang E, Xu J, Gao Y, Zhu X, Guo D, Ma B, Zhao D, Zhang S, Yan S, Zhang R, Gao Y, Xu Z, Ma X 2022 J. Phys. Chem. Lett. 13 7594Google Scholar

    [14]

    Wang Y, Li Y, Gao Y, Chen Y, Zhou Z, Shen X, Jin G 2024 Nucl. Instrum. Methods Phys. Res., Sect. B 557 165547Google Scholar

    [15]

    Abplanalp M J, Kaiser R I 2016 Astrophys. J. 827 132Google Scholar

    [16]

    Kim Y S, Bennett C J, Chen L H, O'Brien K, Kaiser R I 2010 Astrophys. J. 711 744Google Scholar

    [17]

    Russo N D, Vervack Jr R J, Weaver H A, Lisse C M 2009 Icarus 200 271Google Scholar

    [18]

    Kanya R, Kudou T, Schirmel N, Miura S, Weitzel K M, Hoshina K, Yamanouchi K 2012 J. Chem. Phys. 136 204309Google Scholar

    [19]

    Schirmel N, Reusch N, Horsch P, Weitzel K M 2013 Faraday Discuss. 163 461Google Scholar

    [20]

    Boran Y, Gutsev G L, Kolomenskii A A, Zhu F, Schuessler A, Strohaber J 2018 J. Phys. B: At. Mol. Opt. Phys. 51 035003Google Scholar

    [21]

    Zhang Y, Ren B, Yang C L, Wei L, Wang B, Han J, Yu W, Qi Y, Zou Y, Chen L, Wang E, Wei B 2020 Commum. Chem. 3 160Google Scholar

    [22]

    Wei L, Lam C S, Zhang Y, Ren B, Han J, Wang B, Zou Y, Chen L, Lau K C, Wei B 2021 J. Phys. Chem. Lett. 12 5789Google Scholar

    [23]

    Yoshida S, Majima T, Tsuchida H, Saito M 2020 X-Ray Spectrom. 49 177Google Scholar

    [24]

    Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996 Nucl. Instrum. Methods Phys. Res., Sect. B 108 425Google Scholar

    [25]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [26]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [27]

    Ullrich J, Schmidt-Böcking H 1987 Phys. Lett. A 125 193Google Scholar

    [28]

    郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 60 113401Google Scholar

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 113401Google Scholar

    [29]

    Yan S, Zhu X L, Zhang S F, Zhao D M, Zhang P, Wei B, Ma X 2020 Phys. Rev. A 102 032809Google Scholar

    [30]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701Google Scholar

    [31]

    Falcinelli S, Rosi M, Candori P, Vecchiocattivi F, Farrar J M, Pirani F, Balucani N, Alagia M, Richter R, Stranges, S 2014 Lect. Notes Comput. Sci. 8579 554Google Scholar

  • 图 1  $ {{\text{C}}_2}{\text{H}}_6^{2 + } $离子C—C键解离后的TOF二维符合谱

    Figure 1.  TOF 2D coincidence map in the C—C bond dissociation of the $ {{\text{C}}_2}{\text{H}}_6^{2 + } $ ion.

    图 2  红线为通道(1)的KER谱, 蓝线为通道(2)的总KER谱, 黑线为通道(2)中$ {\text{CH}}_2^ + $, $ {\text{CH}}_3^ + $离子的动能和

    Figure 2.  Red line is the KER spectrum of channel (1), the blue line is the total KER spectrum of channel (2), and the black line is the sum of the kinetic energies of $ {\text{CH}}_2^ + $ and $ {\text{CH}}_3^ + $ ions in channel (2).

    图 3  通道(2)的Dalitz图, 其中(a), (b)和(c)分别对应的KER范围为0—6 eV, 6—9 eV和9—11 eV

    Figure 3.  Dalitz plots of channel (2). The panel (a), (b), and (c) correspond to the KER range of 0–6 eV, 6–9 eV, and 9–11 eV, respectively.

    图 4  通道(2)的牛顿图, 其中(a), (b), (c)分别对应的KER范围为0—6 eV, 6—9 eV和9—11 eV; 图中将$ {\text{CH}}_3^ + $的动量大小定义为1, 方向沿X轴; 对$ {\text{CH}}_2^ + $和H离子的动量进行归一化后, 分别展示在上半平面和下半平面

    Figure 4.  Newton diagrams of channel (2). The panel (a), (b), and (c) correspond to the KER range of 0–6 eV, 6–9 eV, and 9–11 eV, respectively. The momentum magnitude of $ {\text{CH}}_3^ + $ is defined as 1, and its direction is along X-axis. The momentum vectors of $ {\text{CH}}_2^ + $ and H are normalized to that of $ {\text{CH}}_3^ + $, and displayed in the upper and lower half planes, respectively.

    图 5  通道(2)的牛顿图, 其中(a), (b), (c)分别对应的KER范围为0—6 eV, 6—9 eV和9—11 eV; 图中将$ {\text{CH}}_2^ + $的动量大小定义为1, 方向沿X轴; 对$ {\text{CH}}_3^ + $和H的动量进行归一化后, 分别展示于上半平面和下半平面

    Figure 5.  Newton diagrams of channel (2). The panel (a), (b), and (c) correspond to the KER range of 0–6 eV, 6–9 eV, and 9–11 eV, respectively. The momentum magnitude of $ {\text{CH}}_2^ + $ is defined as 1, and its direction is along X-axis. The momentum vectors of $ {\text{CH}}_3^ + $ and H are normalized to that of $ {\text{CH}}_2^ + $, and displayed in the upper and lower half planes, respectively.

    图 6  通道(2)的牛顿图, 其中(a), (b), (c)分别对应的KER范围为0—6 eV, 6—9 eV和9—11 eV; 图中将H的动量大小定义为1, 方向沿X轴; 对$ {\text{CH}}_2^ + $和$ {\text{CH}}_3^ + $的动量进行归一化后, 分别展示于上半平面和下半平面

    Figure 6.  Newton diagrams of channel (2). The panel (a), (b), and (c) correspond to the KER range of 0–6 eV, 6–9 eV, and 9–11 eV, respectively. The momentum magnitude of H is defined as 1, and its direction is along X-axis. The momentum vectors of $ {\text{CH}}_2^ + $ and $ {\text{CH}}_3^ + $ are normalized to that of H, and displayed in the upper and lower half planes, respectively.

    Baidu
  • [1]

    Mathur D 2004 Phys. Rep. 391 1Google Scholar

    [2]

    Adoui L, Muranaka T, Tarisien M, Legendre S, Laurent G, Cassimi A, Chesnel J Y, Fléchard X, Frémont F, Gervais B, Giglio E, Hennecart D 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 245 94Google Scholar

    [3]

    Aitelhadjali Z, Kessal S, Quinto M A, Oubaziz D, Champion C 2016 Int. J. Mass Spectrom. 403 53Google Scholar

    [4]

    Shen Z J, Wang E L, Gong M M, Shan X, Chen X J 2016 J. Chem. Phys. 145 234303Google Scholar

    [5]

    Chen L, Wang E L, Shan X, Shen Z J, Zhao X, Chen X J 2021 Phys. Rev. A 104 032814Google Scholar

    [6]

    Jiang T, Wang B, Zhang Y, Wei L, Chen S, Yu W, Zou Y, Chen L, Wei B 2019 Phys. Rev. A 100 022705Google Scholar

    [7]

    Duley A, Kelkar A H 2023 Atoms 11 75Google Scholar

    [8]

    Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 Phys. Rev. A 90 062705Google Scholar

    [9]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303Google Scholar

    [10]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [11]

    Wei L, Chen S, Zhang Y, Wang B, Yu W, Ren B, Han J, Zou Y, Chen L, Wei B 2020 Eur. Phys. J. D 74 133Google Scholar

    [12]

    Das N, De S, Bhatt P, Safvan C P, Majumdar A 2023 J. Chem. Phys. 158 084307Google Scholar

    [13]

    Yuan H, Xu S, Wang E, Xu J, Gao Y, Zhu X, Guo D, Ma B, Zhao D, Zhang S, Yan S, Zhang R, Gao Y, Xu Z, Ma X 2022 J. Phys. Chem. Lett. 13 7594Google Scholar

    [14]

    Wang Y, Li Y, Gao Y, Chen Y, Zhou Z, Shen X, Jin G 2024 Nucl. Instrum. Methods Phys. Res., Sect. B 557 165547Google Scholar

    [15]

    Abplanalp M J, Kaiser R I 2016 Astrophys. J. 827 132Google Scholar

    [16]

    Kim Y S, Bennett C J, Chen L H, O'Brien K, Kaiser R I 2010 Astrophys. J. 711 744Google Scholar

    [17]

    Russo N D, Vervack Jr R J, Weaver H A, Lisse C M 2009 Icarus 200 271Google Scholar

    [18]

    Kanya R, Kudou T, Schirmel N, Miura S, Weitzel K M, Hoshina K, Yamanouchi K 2012 J. Chem. Phys. 136 204309Google Scholar

    [19]

    Schirmel N, Reusch N, Horsch P, Weitzel K M 2013 Faraday Discuss. 163 461Google Scholar

    [20]

    Boran Y, Gutsev G L, Kolomenskii A A, Zhu F, Schuessler A, Strohaber J 2018 J. Phys. B: At. Mol. Opt. Phys. 51 035003Google Scholar

    [21]

    Zhang Y, Ren B, Yang C L, Wei L, Wang B, Han J, Yu W, Qi Y, Zou Y, Chen L, Wang E, Wei B 2020 Commum. Chem. 3 160Google Scholar

    [22]

    Wei L, Lam C S, Zhang Y, Ren B, Han J, Wang B, Zou Y, Chen L, Lau K C, Wei B 2021 J. Phys. Chem. Lett. 12 5789Google Scholar

    [23]

    Yoshida S, Majima T, Tsuchida H, Saito M 2020 X-Ray Spectrom. 49 177Google Scholar

    [24]

    Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996 Nucl. Instrum. Methods Phys. Res., Sect. B 108 425Google Scholar

    [25]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [26]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [27]

    Ullrich J, Schmidt-Böcking H 1987 Phys. Lett. A 125 193Google Scholar

    [28]

    郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 60 113401Google Scholar

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 113401Google Scholar

    [29]

    Yan S, Zhu X L, Zhang S F, Zhao D M, Zhang P, Wei B, Ma X 2020 Phys. Rev. A 102 032809Google Scholar

    [30]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701Google Scholar

    [31]

    Falcinelli S, Rosi M, Candori P, Vecchiocattivi F, Farrar J M, Pirani F, Balucani N, Alagia M, Richter R, Stranges, S 2014 Lect. Notes Comput. Sci. 8579 554Google Scholar

  • [1] PENG Yi, WANG Chunjing, LI Jing, GAO Kaiyue, XU Hancheng, CHEN Chuanjie, QIAN Muyang, DONG Bingyan, WANG Dezhen. Numerical simulation on mechanism of plasma dissociation of carbon dioxide in atmospheric pressure packed-bed reactors. Acta Physica Sinica, 2025, 74(2): 025202. doi: 10.7498/aps.74.20241241
    [2] Xu Jia-Wei, Xu Chuan-Xi, Zhang Rui-Tian, Zhu Xiao-Long, Feng Wen-Tian, Zhao Dong-Mei, Liang Gui-Yun, Guo Da-Long, Gao Yong, Zhang Shao-Feng, Su Mao-Gen, Ma Xin-Wen. Experimental measurement of state-selective charge exchange and test of astrophysics soft X-ray emission model. Acta Physica Sinica, 2021, 70(8): 080702. doi: 10.7498/aps.70.20201685
    [3] Hai Bang, Zhang Shao-Feng, Zhang Min, Dong Da-Pu, Lei Jian-Ting, Zhao Dong-Mei, Ma Xin-Wen. A tabletop experimental system for investigating ultrafast atomic dynamics based on femtosecond extreme ultraviolet photons. Acta Physica Sinica, 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [4] Zhang Min, Yan Shun-Cheng, Gao Yong, Zhang Shao-Feng, Ma Xin-Wen. Methods of calibrating kinetic energy release in dissociation process of molecular dications. Acta Physica Sinica, 2020, 69(20): 203401. doi: 10.7498/aps.69.20200901
    [5] Shen Li-Li, Yan Shun-Cheng, Ma Xin-Wen, Zhu Xiao-Long, Zhang Shao-Feng, Feng Wen-Tian, Zhang Peng-Ju, Guo Da-Long, Gao Yong, Hai Bang, Zhang Min, Zhao Dong-Mei. Three-body fragmentation dynamics of OCS3+ induced by intermediate energy Ne4+ ion impact. Acta Physica Sinica, 2018, 67(4): 043401. doi: 10.7498/aps.67.20172163
    [6] Yan Yi-Hui, Liu Yu-Zhu, Ding Peng-Fei, Yin Wen-Yi. Multiphoton ionization dissociation dynamics of iodoethane studied with velocity map imaging technique. Acta Physica Sinica, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [7] Sun Qi-Xiang, Yan Bing. Computational study of two-body and three-body dissociation of CH3I2+. Acta Physica Sinica, 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [8] Liu Yu-Zhu, Chen Yun-Yun, Zheng Gai-Ge, Jin Feng, Gregor Knopp. Multiphoton ionization and dissociation dynamics of Freon-113 induced by femtosecond laser pulse. Acta Physica Sinica, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [9] Lin Kang, Gong Xiao-Chun, Song Qi-Ying, Ji Qin-Ying, Ma Jun-Yang, Zhang Wen-Bin, Lu Pei-Fen, Zeng He-Ping, Wu Jian. Directional bond breaking of CO molecules by counter-rotating circularly polarized two-color laser fields. Acta Physica Sinica, 2016, 65(22): 224209. doi: 10.7498/aps.65.224209
    [10] Dai Li-Jiao, Li Hong-Yu. Generations of energetic deuterons and neutrons from the Coulomb explosion of deuterated ethane clusters. Acta Physica Sinica, 2014, 63(24): 243601. doi: 10.7498/aps.63.243601
    [11] Guo Da-Long, Ma Xin-Wen, Feng Wen-Tian, Zhang Shao-Feng, Zhu Xiao-Long. Analysis of momentum and energy resolutions of the reaction microscope. Acta Physica Sinica, 2011, 60(11): 113401. doi: 10.7498/aps.60.113401
    [12] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [13] Chen Gao-Fei, Gong Mao-Qiong, Shen Jun, Zou Xin, Wu Jian-Feng. Two-phase frictional pressure drop of 1,1-difluoroethane in a horizontal tube. Acta Physica Sinica, 2010, 59(12): 8669-8675. doi: 10.7498/aps.59.8669
    [14] Cao Shi-Ping, Ma Xin-Wen, Dorn A., Dürr M., Ullrich J.. Correlation of emitted electrons in near threshold double ionization of helium by electron impact. Acta Physica Sinica, 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [15] Ma Jing, Ding Lei, Gu Xue-Jun, Fang Li, Zhang Wei-Jun, Wei Li-Xia, Wang Jing, Yang Bin, Huang Chao-Qun, Qi Fei. Vacuum ultraviolet photoionization and photodissociation of C2HCl3 by synchrotron radiation. Acta Physica Sinica, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [16] Tang Bi-Feng, Xiong Ping-Fan, Zhang Xiu, Zhang Bing. Mass analyzed threshold ionization spectra of ethyl bromide. Acta Physica Sinica, 2006, 55(9): 4483-4489. doi: 10.7498/aps.55.4483
    [17] Yao Guan-Xin, Wang Xiao-Li, Du Chuan-Mei, Li Hui-Min, Zhang Xian-Yi, Zheng Xian-Feng, Ji Xue-Han, Cui Zhi-Feng. An experimental investigation on the resonance enhanced multiphoton ionization and dissociation processes of acetone. Acta Physica Sinica, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [18] Zhang Xian-Ren, Shen Zhi-Gang, Chen Jian-Feng, Wang Wen-Chuan. Adsorption of linear ethane molecules in MCM-41 by molecular simulation. Acta Physica Sinica, 2003, 52(1): 163-168. doi: 10.7498/aps.52.163
    [19] Hu Zheng-Fa, Wang Zhen-Ya, Kong Xiang-Lei, Zhang Xian-Yi, Li Hai-Yang, Zhou Shi-Kang, Wang Juan, Wu Guo-Hua, Sheng Liu-Si, Zhang Yun-Wu. . Acta Physica Sinica, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
    [20] WANG CHAO-YING, CHEN LI-QUAN, CHEN ZHU-SHENG, HE YUAN-KANG. STUDY OF ELECTRICAL PROPERTIES OF POLY (ETHLENE OXIDE )-NaSCN POLYMER IONIC CONDUCTOR. Acta Physica Sinica, 1984, 33(6): 854-860. doi: 10.7498/aps.33.854
Metrics
  • Abstract views:  538
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  02 January 2025
  • Accepted Date:  17 January 2025
  • Available Online:  24 January 2025
  • Published Online:  20 March 2025

/

返回文章
返回
Baidu
map