-
双环完美涡旋光束(double-ring perfect vortex beam,DR-PVB)是由两个同心的完美涡旋光束(perfect vortex beam,PVB)叠加而成,本文研究了DR-PVB在源平面的光强和相位分布及经过ABCD光学系统聚焦后的光强分布,通过数值模拟可知聚焦后的DR-PVB产生的光斑数是两束PVB的拓扑荷之差绝对值的倍数。在此基础上,分析了聚焦DR-PVB对瑞利微粒的光辐射力,研究表明聚焦后的DR-PVB可以同时俘获高折射率微粒和低折射率微粒。此外,改变DR-PVB的半径引起的光强分布的变化将导致光束对高低折射率粒子的俘获性能改变,且俘获数量也会发生变化,因此实际中可根据主要俘获对象来对光束半径组合进行灵活调整。最后对微粒整体的受力进行分析,并以此为依据判断微粒俘获的尺寸范围及俘获稳定性。这一工作的结果为光学操纵领域提供了潜在的应用价值。The double-ring perfect vortex beam (DR-PVB) is generated through the superposition of two concentric perfect vortex beams (PVB). In this paper, we first study the intensity and phase distribution of the DR-PVB in the source plane. Secondly, utilizing the Huygens-Fresnel principle and the Collins formula, we obtain the intensity distribution of the DR-PVB after being focused by an ABCD optical system that includes a focusing lens. The results indicate that the intensity distribution of the focused beam is consistent with the interference pattern of two Bessel Gaussian beams. Furthermore, the number of spots in the focused intensity distribution is a multiple of the absolute value of the difference in the topological charges of the two PVBs. On the other hand, the overall size of the light beam can be adjusted by changing the lens's focal length. Thirdly, we analyze the optical radiation force exerted by the focused DR-PVB on Rayleigh particles with different refractive indices, silica and bubble, respectively. The results show that the focused DR-PVB can capture both high and low refractive index particles in the water. In addition, by comparing the focused DR-PVB under different radius combinations, we found that changing the beam radius will also change the light intensity distribution, which will lead to a change in the position and quantity of the captured particles. This result provides us with a new idea for adjusting the capture of particles in future experiments. Finally, we analyzed the gradient forces, scattering, and Brownian forces acting on the particles in the x, y, and z directions, respectively. Based on our analysis, we established the condition for stable particle capture, where the gradient force must overcome the effects of Brownian motion and scattering forces. From this, we determined the theoretical size range of particles that can be captured by the focused DR-PVB. Compared with other beams, such as Airy beams and Bessel beams, focused DR-PVB can be modulated by changing the topological charges of the two PVBs, which enables the possibility of capturing multiple particles. The results of this paper have potential application value in the field of optical manipulation.
-
[1] Ashkin A, Dziedzic J M, Bjorkholm J E, Chu S 1986 Opt. Lett. 11 288
[2] Ciarlo A, Pastore R, Greco F, Sasso A, Pesce G 2023 Sci. Rep. 13 7408
[3] Chen H C, Cheng C J 2022 Appl. Sci. 12 10244
[4] Bustamante C J, Chemla Y R, Liu S, Wang M D 2021 Nat. Rev. Methods Primers 1 25
[5] Anderegg L, Cheuk L W, Bao Y, Burchesky S, Ketterle W, Ni K-K, Doyle J M 2019 Science 365 1156
[6] Tian Y H, Wang L L, Duan G Y, Yu L 2021 Opt. Commun. 485126712
[7] Munoz-Perez F M, Ferrando V, Furlan W D, Castro-Palacio J C, Arias-Gonzalez J R, Monsoriu J A 2023 iScience 26 107987
[8] Yan W Z, Fan Q, Yang P F, Li G, Zhang P F, Zhang T C 2023 Acta Phys. Sin. 72 114202(in Chinese) [闫玮植,范青,杨鹏飞,李刚,张鹏飞,张天才2023 72 114202]
[9] Santamato E, Daino B, Romagnoli M, Settembre M, Shen Y 1991 Opticals Effects in Liquid Crystals 158
[10] Bonin K D, Kourmanov B, Walker T G 2002 Opt. Express 10 984
[11] Pedaci F, Huang Z, Van Oene M, Barland S, Dekker N H 2011 Biophys. J. l 100 10a
[12] Grier D G 2003 Nature 424 810
[13] Huang S J, Miao Z, He C, Pang F F, Li Y C, Wang T Y 2016 Opts. Lasers. Eng. 78 132
[14] Andrade U M S, Garcia A M, Rocha M S 2021 Appl. Opt. 60 3422
[15] Ostrovsky A S, Rickenstorff-Parrao C, Arrizon V 2013 Opt. Lett. 38 534
[16] Vaity P, Rusch L 2015 Opt. Lett. 40 597
[17] Chen Y, Fang Z X, Ren Y X, Gong L, Lu R D 2015 Appl. Opt. 54 8030
[18] Liu X J, Li Y L, Yao G P, Li C X, Fang B, Tang Y, Hong Z, Jing X F 2024 Chin. J. Phys. 91 828
[19] Ma H X, Li X Z, Tai Y P, Li H H, Wang J G, Tang M M, Tang J, Wang Y S, Nie Z G 2017 Ann. Phys. 5291700285
[20] Das B K, Granados C, Krüger M, Ciappina M F 2024 Opt. Commun. 570 130918
[21] Chen M Z, Mazilu M, Arita Y 2015 Opt. Rev. 22 162
[22] Tkachenko G, Chen M Z, Dholakia K, Mazilu M 2017 Optica 4 330
[23] Liang Y S, Lei M, Yan S H, Li M M, Cai Y A, Wang Z J, Yu X H, Yao B L 2018 Appl. Opt. 57 79
[24] Wang S L, Xu J P, Yang Y P, Cheng M J 2024 Opt. Commun. 556130258
[25] Chen M, Mazilu M, Arita Y, Wright E M, Dholakia K 2013 Opt. Lett. 38 4919
[26] Arita Y, Chen M, Wright E M, Dholakia K 2017 J. Opt. Soc. Am. B 34 C14
[27] Garcés-Chávez V, McGloin D, Melville H, Sibbett W, Dholakia K 2002 Nature 419 145
[28] Christodoulides D N 2008 Nat. Photonics 2 652
[29] Baumgartl J, Mazilu M, Dholakia K 2008Nat. Photonics 2 675
[30] Zhu F, Huang S, Shao W, Zhang J, Chen M, Zhang W, Zeng J 2017Opt. Commun. 396 50
[31] Ma H, Li X, Tai Y, Li H, Wang J, Tang M, Tang J, Wang Y, Nie Z 2017 Ann. Phys. 529 1700285
[32] Collins S A 1970 J. Opt. Soc. Am. 60156
[33] Gradshteyn I S, Ryzhik I M 2014Table of integrals, series, and products (Academic press)
[34] Chen C H, Tai P T, Hsieh W F 2004 Appl. Opt. 43 6001
[35] Harada Y, Asakura T 1996 Opt. Commun. 124 529
计量
- 文章访问数: 24
- PDF下载量: 1
- 被引次数: 0