-
To further understand the patterns and mechanisms of total ionizing dose (TID) radiation damage in carbon nanotube field-effect transistor (CNTFET), the total dose effects of 10 keV X-ray irradiation on N-type and P-type CNTFETs are investigated in this work. The irradiation dose rate is 200 rad(Si)/s, with a cumulative dose of 100 krad(Si) for N-type devices and 90 krad(Si) for P-type devices. The differences in TID effect between N-type and P-type CNTFETs under the conditions of floating gate bias and on-state bias, the influence of irradiation on the hysteresis characteristics of N-type CNTFETs, and the influence of channel sizes on the TID effects of N-type CNTFETs are also explored. The results indicate that both types of transistors, after being irradiated, exhibit the threshold voltage shift, transconductance degradation, increase in subthreshold swing, and decrease in saturation current. In the irradiation process, N-type devices under floating gate bias suffer more severe damage than those under on-state bias, while P-type devices under on-state bias experience more significant damage than those under floating gate bias. The hysteresis widths of N-type devices decrease after being irradiated, and the TID damage becomes more severe with the increase of channel dimensions. The main reason for the degradation of device parameters is the trap charges generated in the irradiated process. The gate bias applied during irradiation affects the capture of electrons or holes by traps in the gate dielectric, resulting in different radiation damage characteristics for different types of devices. The reduction in the hysteresis width of N-type devices after being irradiated may be attributed to the negatively charged trap charges generated during irradiation, which hinders the capture of electrons by water molecules, OH groups, and traps in the gate dielectric. Moreover, the channel dimensions of the transistors also influence their radiation response: larger channel dimensions result in more trap charges generated in the gate dielectric and at the interface during irradiation, leading to more severe transistor damage.
-
表 1 N型和P型器件辐照前后电学参数变化量
Table 1. Changes in electrical parameters of N-type and P-type devices before and after irradiation.
器件类型 ΔGm/μS 标准差 ΔSS/(mV·dec–1) 标准差 ΔVth/mV 标准差 N型器件 –0.275 0.02 50 0.015 149 0.025 P型器件 –1 0.022 20 0.02 –45 0.018 表 2 辐照前后不同沟道尺寸的CNTFET电学参数变化
Table 2. Changes in electrical parameters of CNTFET with different channel sizes before and after irradiation.
宽长比 ΔGm/μS ΔSS/(mV·dec–1) ΔVth/V 30 µm/5 µm –0.34 52 0.15 35 µm/5 µm –0.35 53 0.19 40 µm/5 µm –0.65 60 0.7 -
[1] Qiu C G, Zhang Z Y, Xiao M M, Yang Y J, Zhong D L, Peng L M 2017 Science 355 271
Google Scholar
[2] Franklin A D, Luisier M, Han S J, Tulevski G, Breslin C M, Gignac L, Lundstrom M S, Haensch W 2012 Nano Lett. 12 758
Google Scholar
[3] Chen B Y, Zhang P P, Ding L, Han J, Qiu S, Li Q W, Zhang Z Y, Peng L M 2016 Nano Lett. 16 5120
Google Scholar
[4] Zhu M G, Si J, Zhang Z Y, Peng L M 2018 Adv. Mater. 30 1707068
Google Scholar
[5] Yang Y Y, Ding L, Chen H J, Han J, Zhang Z Y, Peng L M 2018 Nano Res. 11 300
Google Scholar
[6] Shulaker M M, Hills G, Patil N, Wei H, Chen H Y, Wong H S, Mitra S 2013 Nature 501 526
Google Scholar
[7] De Volder M F, Tawfick S H, Baughman R H, Hart A J 2013 Science 339 535
Google Scholar
[8] 刘一凡, 张志勇 2022 71 068503
Google Scholar
Liu Y F, Zhang Z Y 2022 Acta Phys. Sin. 71 068503
Google Scholar
[9] 马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅 2014 63 026101
Google Scholar
Ma W Y, Lu W, Guo Q, He C F, Wu X, Wang X, Cong Z C, Wang B, Maria 2014 Acta Phys. Sin. 63 026101
Google Scholar
[10] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 69 078501
Google Scholar
Dong S J, Guo H X, Ma W Y, Lv L, Pan X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501
Google Scholar
[11] Krasheninnikov A, Nordlund K, Sirviö M, Salonen, E, Keinonen J 2001 Phys. Rev. B 63 245405
Google Scholar
[12] Tolvanen A, Kotakoski J, Krasheninnikov A, Nordlund K 2007 Appl. Phys. Lett. 91 173109
Google Scholar
[13] Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301
Google Scholar
[14] Zhao Y D, Li D Q, Xiao L, Liu J K, Xiao X Y, L G H, Jin Y H, Jiang K L, Wang J P, Fan S S, Li Q Q 2016 Carbon 108 363
Google Scholar
[15] Zhang X R, Zhu H P, Peng S A, Xiong G D, Zhu C Y, Huang X N, Cao S R, Zhang J J, Yan Y P, Yao Y, Zhang D Y, Shi J Y, Wang L, Li B, Jin Z 2021 J. Semicond. 42 112002
Google Scholar
[16] Zhu M G, Zhou J S, Sun P K, Peng L M, Zhang Z Y 2021 ACS Appl. Mater. Interfaces 13 47756
Google Scholar
[17] Kanhaiya P S, Yu A, Netzer R, Kemp W, Doyle D, Shulaker M M 2021 ACS Nano 15 17310
Google Scholar
[18] Petrosjanc K O, Adonin A S, Kharitonov I A, Sicheva M V 1994 Proceedings of 1994 IEEE International Conference on Microelectronic Test Structures Moscow, Russia, March 22-25, 1994 p126
[19] Oldham T R, Mclean F B 2002 IEEE T. Nucl. Sci. 50 483
[20] Galloway K F, Gaitan M, Russell T J 1984 IEEE T. Nucl. Sci. 31 1497
Google Scholar
[21] Lu P, Zhu M G, Zhao P X, Fan C W, Zhu H P, Gao J T, Y C, Han Z S, Li B, Liu J, Zhang Z Y 2023 ACS Appl. Mater. Interfaces 15 10936
Google Scholar
[22] McMorrow J J, Cress C D, Affouda C 2012 ACS Nano 6 5040
Google Scholar
[23] Belyakov V V, Pershenkov V S, Zebrev G I, Sogoyan A V, Chumakov A I, Nikiforov A Y, Skorobogatov P K 2003 Russian Microelectron. 32 25
Google Scholar
[24] Ni H Z, Li M, Li X H, Zhu X W, Liu H H, Xu M 2022 IEEE T. Electron Dev. 69 1069
Google Scholar
[25] Kim W, Javey A, Vermesh O, Wang Q, Li Y M, Dai H J, 2003 Nano Letters 3 193
Google Scholar
[26] Chua L L, Zaumseil J, Chang J F, Ou E C, Ho P K, Sirringhaus H, Friend R H 2005 Nature 434 194
Google Scholar
[27] Lee S, Koo B, Shin J, Lee E, Park H, Kim H 2006 Appl. Phys. Lett. 88 99
[28] Cai X, Gerlach C P, Frisbie C D 2007 J. Phys. Chem. C 111 452
Google Scholar
[29] Ha T J, Kiriya D, Chen K, Javey A 2014 ACS Appl. Mater. Interfaces 6 8441
Google Scholar
[30] Wang Y W, Wang S, Ye H D, Zhang W H, Xiang L 2023 IEEE T. Dev. Mater. Re. 23 571
Google Scholar
Metrics
- Abstract views: 343
- PDF Downloads: 4
- Cited By: 0