Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Planar quantum squeezing and atom interferometry

Huang Xin-Yao Xiang Yu Sun Feng-Xiao He Qiong-Yi Gong Qi-Huang

Citation:

Planar quantum squeezing and atom interferometry

Huang Xin-Yao, Xiang Yu, Sun Feng-Xiao, He Qiong-Yi, Gong Qi-Huang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Reduction of quantum noise in one spin component is a significant tool for enhancing the sensitivities of interferometers and atomic clocks. It has been recently implemented for ultra-cold atomic Bose-Einstein condensate (BEC) interferometer. This type of quantum noise reduction reduces the measurement noise near some predetermined phase. However, if the phase is completely unknown prior to measurement, then it is not known which phase quadrature should be in a squeezed state. We introduce a novel planar squeezing uncertainty relation for spin variance in a plane, and analyze how to obtain such a planar quantum squeezed (PQS) state by using a double-well single component BEC, through the use of local nonlinear S-wave scattering interaction between trapped atoms. Here, we consider the PQS that is generated by using two hyperfine states in a two components BEC system, which is useful for quantum metrology. By comparison with the case of two spatial wells, the Hamiltonian parameters can be controlled in a more efficient way. The spin component can be measured by detecting the occupation number difference between the two internal modes, while one needs to observe a spatial interference pattern in the double well BEC case. This is the major difference between the internal and external cases. Another difference is that one can use the Rabi frequency Ω instead of the Josephson parameters to switch the Hamiltonian parameters through using a diabatic technique. Therefore the coupling could be switched off or on to study the different evolutions. PQS simultaneously reduces the quantum noises of two orthogonal spin projections below the standard quantum limit, while increases the noise in the third dimension. This allows the improvement in phase measurement at any phase-angle. PQS states that reductions of fluctuations everywhere in a plane have potential utility in "one-shot" phase measurement, where iterative or repeated measurement strategies cannot be utilized. The improved interferometric phase measurements and planar uncertainty relations are useful for detecting the entanglement in mesoscopic system between two distinguished modes regardless of the third component.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274025, 61475006, 11121091).
    [1]

    Wineland D J, Bollinger J J, Itano W M, Heinzen D J 1994 Phys. Rev. A 50 67

    [2]

    Wineland D J, Bollinger J J, Itano W M, Moore F L, Heinzen D J 1992 Phys. Rev. A 46 6797

    [3]

    Kuzmich A, Mølmer K, Polzik E S 1997 Phys. Rev. Lett. 79 4782

    [4]

    Agarwal G S, Puri R R 1990 Phys. Rev. A 41 3782

    [5]

    Zou H M, Fang M F, Yang B Y 2013 Chin. Phys. B 22 120303

    [6]

    Hofmann H F, Takeuchi S 2003 Phys. Rev. A 68 032103

    [7]

    Tóth G, Knapp C, Gühne O, Briegel H J 2009 Phys. Rev. A 79 042334

    [8]

    Liu S Y, Zheng K M, Jia F, Hu L Y, Xie F S 2014 Acta Phys. Sin. 63 140302 (in Chinese) [刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森 2014 63 140302]

    [9]

    Zhou B J, Peng Z H, Jia C X, Jiang C L, Liu X J 2014 Chin. Phys. B 23 120305

    [10]

    Cavalcanti E G, Drummond P D, Bachor H A, Reid M D 2009 Opt. Express 17 18693

    [11]

    Reid M D, Drummond P D, Bowen W P, Cavalcanti E G, Lam P K, Bachor H A, Andersen U L, Leuchs G 2009 Rev. Mod. Phys. 81 1727

    [12]

    Cavalcanti E G, Jones S J, Wiseman H M, Reid M D 2009 Phys. Rev. A 80 032112

    [13]

    Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138

    [14]

    Estève J, Gross C, Weller A, Giovanazzi S, Oberthaler M K 2008 Nature 455 1216

    [15]

    Riedel M F, Bøhi P, Li Y, Hönsch T W, Sinatra A, Treutlein P 2010 Nature 464 1170

    [16]

    Gross C, Zibold T, Nicklas E, Estève J, Oberthaler M K 2010 Nature 464 1165

    [17]

    Ma J, Wang X G, Sun C P, Nori F 2011 Phys. Rep. 509 89

    [18]

    Chang F, Wang X Q, Gai Y J, Yan D, Song L J 2014 Acta Phys. Sin. 63 170302 (in Chinese) [常峰, 王晓茜, 盖永杰, 严冬, 宋立军 2014 63 170302]

    [19]

    He Q Y, Peng S G, Drummond P D, Reid M D 2011 Phys. Rev. A 84 022107

    [20]

    He Q Y, Vaughan T G, Drummond P D, Reid M D 2012 New J. Phys. 14 093012

    [21]

    Smerzi A, Fantoni S 1997 Phys. Rev. Lett. 78 3589

    [22]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2005 Phys. Rev. A 72 063623

    [23]

    Yan D, Song L J, Chen D W 2009 Acta Phys. Sin. 58 3679 (in Chinese) [严冬, 宋立军, 陈殿伟 2009 58 3679]

    [24]

    Wu B, Niu Q 2000 Phys. Rev. A 61 23402

    [25]

    Liu J, Wu B, Niu Q 2003 Phys. Rev. Lett. 90 170404

    [26]

    Wu B, Liu J, Niu Q 2005 Phys. Rev. Lett. 94 140402

    [27]

    Raghavan S, Smerzi A, Fantoni S, Shenoy S R 1999 Phys. Rev. A 59 620

    [28]

    Wang G F, Fu L B, Liu J 2006 Phys. Rev. A 73 13619

    [29]

    Liu B, Fu L B, Yang S P, Liu J 2007 Phys. Rev. A 75 33601

    [30]

    Kasamatsu K, Tsubota M, Ueda M 2003 Phys. Rev. Lett. 91 150406

    [31]

    Kasamatsu K, Tsubota M 2009 Phys. Rev. A 79 023606

    [32]

    Mason P, Aftalion A 2011 Phys. Rev. A 84 033611

    [33]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403

    [34]

    Xu Z F, Lu R, You L 2011 Phys. Rev. A 83 053602

    [35]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402

    [36]

    Xu Z F, Kawaguchi Y, You L, Ueda M 2012 Phys. Rev. A 86 033628

    [37]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403

    [38]

    Puentes G, Colangelo G, Sewell1 R J, Mitchell M W 2013 New J. Phys. 15 103031

    [39]

    He Q Y, Drummond P D, Olsen M K, Reid M D 2012 Phys. Rev. A 86 023626

    [40]

    He Q Y, Reid M D, Vaughan T G, Gross C, Oberthaler M, Drummond P D 2011 Phys. Rev. Lett. 106 120405

    [41]

    Law C K, Ng H, Leung P 2001 Phys. Rev. A 63 055601

    [42]

    Fattori M, D'Errico C, Roati G, Zaccanti M, Jona L M, Modugno M, Inguscio M, Modugno G 2008 Phys. Rev. Lett. 100 080405

    [43]

    Hillery M, Zubairy M S 2006 Phys. Rev. Lett. 96 050503

    [44]

    Cavalcanti E G, He Q Y, Reid M D, Wiseman H M 2011 Phys. Rev. A 84 032115

    [45]

    Sørensen A S, Mølmer K 2001 Phys. Rev. Lett. 86 4431

  • [1]

    Wineland D J, Bollinger J J, Itano W M, Heinzen D J 1994 Phys. Rev. A 50 67

    [2]

    Wineland D J, Bollinger J J, Itano W M, Moore F L, Heinzen D J 1992 Phys. Rev. A 46 6797

    [3]

    Kuzmich A, Mølmer K, Polzik E S 1997 Phys. Rev. Lett. 79 4782

    [4]

    Agarwal G S, Puri R R 1990 Phys. Rev. A 41 3782

    [5]

    Zou H M, Fang M F, Yang B Y 2013 Chin. Phys. B 22 120303

    [6]

    Hofmann H F, Takeuchi S 2003 Phys. Rev. A 68 032103

    [7]

    Tóth G, Knapp C, Gühne O, Briegel H J 2009 Phys. Rev. A 79 042334

    [8]

    Liu S Y, Zheng K M, Jia F, Hu L Y, Xie F S 2014 Acta Phys. Sin. 63 140302 (in Chinese) [刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森 2014 63 140302]

    [9]

    Zhou B J, Peng Z H, Jia C X, Jiang C L, Liu X J 2014 Chin. Phys. B 23 120305

    [10]

    Cavalcanti E G, Drummond P D, Bachor H A, Reid M D 2009 Opt. Express 17 18693

    [11]

    Reid M D, Drummond P D, Bowen W P, Cavalcanti E G, Lam P K, Bachor H A, Andersen U L, Leuchs G 2009 Rev. Mod. Phys. 81 1727

    [12]

    Cavalcanti E G, Jones S J, Wiseman H M, Reid M D 2009 Phys. Rev. A 80 032112

    [13]

    Kitagawa M, Ueda M 1993 Phys. Rev. A 47 5138

    [14]

    Estève J, Gross C, Weller A, Giovanazzi S, Oberthaler M K 2008 Nature 455 1216

    [15]

    Riedel M F, Bøhi P, Li Y, Hönsch T W, Sinatra A, Treutlein P 2010 Nature 464 1170

    [16]

    Gross C, Zibold T, Nicklas E, Estève J, Oberthaler M K 2010 Nature 464 1165

    [17]

    Ma J, Wang X G, Sun C P, Nori F 2011 Phys. Rep. 509 89

    [18]

    Chang F, Wang X Q, Gai Y J, Yan D, Song L J 2014 Acta Phys. Sin. 63 170302 (in Chinese) [常峰, 王晓茜, 盖永杰, 严冬, 宋立军 2014 63 170302]

    [19]

    He Q Y, Peng S G, Drummond P D, Reid M D 2011 Phys. Rev. A 84 022107

    [20]

    He Q Y, Vaughan T G, Drummond P D, Reid M D 2012 New J. Phys. 14 093012

    [21]

    Smerzi A, Fantoni S 1997 Phys. Rev. Lett. 78 3589

    [22]

    Liu J, Wang W G, Zhang C W, Niu Q, Li B W 2005 Phys. Rev. A 72 063623

    [23]

    Yan D, Song L J, Chen D W 2009 Acta Phys. Sin. 58 3679 (in Chinese) [严冬, 宋立军, 陈殿伟 2009 58 3679]

    [24]

    Wu B, Niu Q 2000 Phys. Rev. A 61 23402

    [25]

    Liu J, Wu B, Niu Q 2003 Phys. Rev. Lett. 90 170404

    [26]

    Wu B, Liu J, Niu Q 2005 Phys. Rev. Lett. 94 140402

    [27]

    Raghavan S, Smerzi A, Fantoni S, Shenoy S R 1999 Phys. Rev. A 59 620

    [28]

    Wang G F, Fu L B, Liu J 2006 Phys. Rev. A 73 13619

    [29]

    Liu B, Fu L B, Yang S P, Liu J 2007 Phys. Rev. A 75 33601

    [30]

    Kasamatsu K, Tsubota M, Ueda M 2003 Phys. Rev. Lett. 91 150406

    [31]

    Kasamatsu K, Tsubota M 2009 Phys. Rev. A 79 023606

    [32]

    Mason P, Aftalion A 2011 Phys. Rev. A 84 033611

    [33]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403

    [34]

    Xu Z F, Lu R, You L 2011 Phys. Rev. A 83 053602

    [35]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402

    [36]

    Xu Z F, Kawaguchi Y, You L, Ueda M 2012 Phys. Rev. A 86 033628

    [37]

    Wang C, Gao C, Jian C M, Zhai H 2010 Phys. Rev. Lett. 105 160403

    [38]

    Puentes G, Colangelo G, Sewell1 R J, Mitchell M W 2013 New J. Phys. 15 103031

    [39]

    He Q Y, Drummond P D, Olsen M K, Reid M D 2012 Phys. Rev. A 86 023626

    [40]

    He Q Y, Reid M D, Vaughan T G, Gross C, Oberthaler M, Drummond P D 2011 Phys. Rev. Lett. 106 120405

    [41]

    Law C K, Ng H, Leung P 2001 Phys. Rev. A 63 055601

    [42]

    Fattori M, D'Errico C, Roati G, Zaccanti M, Jona L M, Modugno M, Inguscio M, Modugno G 2008 Phys. Rev. Lett. 100 080405

    [43]

    Hillery M, Zubairy M S 2006 Phys. Rev. Lett. 96 050503

    [44]

    Cavalcanti E G, He Q Y, Reid M D, Wiseman H M 2011 Phys. Rev. A 84 032115

    [45]

    Sørensen A S, Mølmer K 2001 Phys. Rev. Lett. 86 4431

  • [1] Xie Ke, Luo Ji-Hong, Yao Xing-Can. Preparation of Bose-Einstein condensate of dysprosium atoms based on demagnetization cooling. Acta Physica Sinica, 2024, 73(21): 216701. doi: 10.7498/aps.73.20241299
    [2] Qiu Xu, Wang Lin-Xue, Chen Guang-Ping, Hu Ai-Yuan, Wen Lin. Dynamics of spin-tensor-momentum coupled Bose-Einstein condensates. Acta Physica Sinica, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [3] He Li, Yu Zeng-Qiang. Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition. Acta Physica Sinica, 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [4] Li Zhi, Cao Hui. Klein tunneling in spin-orbit coupled Bose-Einstein condensate scattered by cusp barrier. Acta Physica Sinica, 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [5] Chang Feng, Wang Xiao-Qian, Gai Yong-Jie, Yan Dong, Song Li-Jun. Quantum Fisher information and spin squeezing in the interaction system of light and matter. Acta Physica Sinica, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [6] Nong Chun-Xuan, Li Ming, Chen Cui-Ling. Squeezing properties of two-mode atom laser in a system of Ξ-type three-level atomic Bose-Einstein condensate interacting with single-mode light field. Acta Physica Sinica, 2014, 63(4): 043202. doi: 10.7498/aps.63.043202
    [7] Li Ming, Chen Cui-Ling. Squeezing properties of atom laser from two-level atomic Bose-Einstein condensate interacting with two-mode light field. Acta Physica Sinica, 2014, 63(4): 043201. doi: 10.7498/aps.63.043201
    [8] Chai Zhao-Liang, Zhou Yu, Ma Xiao-Dong. Landau damping and frequency-shift of monopole mode in an elongated-rubidium Bose-Einstein condensate. Acta Physica Sinica, 2013, 62(13): 130307. doi: 10.7498/aps.62.130307
    [9] Li Zhi, Wang Jian-Zhong. Barrier scattering properties in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [10] Li Ming, Chen Ding-Han, Chen Cui-Ling. Influence of Ξ-type three-level atomic Bose-Einstein condensate on the squeezing properties of light field. Acta Physica Sinica, 2013, 62(18): 183201. doi: 10.7498/aps.62.183201
    [11] Wang Jian-Zhong, Cao Hui, Dou Fu-Quan. Many-body quantum fluctuation effects of Rosen-Zener transition in Bose-Einstein condensates. Acta Physica Sinica, 2012, 61(22): 220305. doi: 10.7498/aps.61.220305
    [12] Li Fei, Zhang Dong-Xia, Li Wen-Bin. Spatially chaotic distribution of atoms in Bose-Einstein condensate systems. Acta Physica Sinica, 2011, 60(12): 120304. doi: 10.7498/aps.60.120304
    [13] Song Li-Jun, Yan Dong, Liu Yie. Quantum Fisher information and chaos in the system of Bose-Einstein condensate. Acta Physica Sinica, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [14] Li Ming. Influence of an atomic Bose-Einstein condensate on the squeezing properties of V-type three-level atomic lasers. Acta Physica Sinica, 2011, 60(6): 063201. doi: 10.7498/aps.60.063201
    [15] Yan Dong, Song Li-Jun, Chen Dian-Wei. Spin squeezing of two-component Bose-Einstein condensate. Acta Physica Sinica, 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [16] Wang Guan-Fang, Liu Hong. Irregular spin tunneling for Bose-Einstein condensates in a sweeping magnetic field. Acta Physica Sinica, 2008, 57(2): 667-673. doi: 10.7498/aps.57.667
    [17] Cui Hai-Tao, Wang Lin-Cheng, Yi Xue-Xi. Low-dimensional Bose-Einstein condensation in finite-number trapped atoms. Acta Physica Sinica, 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
    [18] Zhou Ming, Fang Jia-Yuan, Huang Chun-Jia. Squeezing effect of light caused by Bose-Einstein condensate composed of interac tive atoms. Acta Physica Sinica, 2003, 52(8): 1916-1919. doi: 10.7498/aps.52.1916
    [19] Wang Cheng-Zhi, Fang Miao-Fa. . Acta Physica Sinica, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [20] YAN KE-ZHU, TAN WEI-HAN. BOSE-EINSTEIN CONDERSATION OF NEUTRAL ATOMS WITH ATTRACTIVE INTERACTION IN A HAR MONIC TRAP. Acta Physica Sinica, 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
Metrics
  • Abstract views:  7958
  • PDF Downloads:  437
  • Cited By: 0
Publishing process
  • Received Date:  30 March 2015
  • Accepted Date:  18 May 2015
  • Published Online:  05 August 2015

/

返回文章
返回
Baidu
map