Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and performance of double-layer metal mesh transparent conductive films based on crack template method

LIAO Dunwei ZHOU Jianhua ZHENG Yuejun

Citation:

Preparation and performance of double-layer metal mesh transparent conductive films based on crack template method

LIAO Dunwei, ZHOU Jianhua, ZHENG Yuejun
cstr: 32037.14.aps.74.20241305
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to improve the electromagnetic shielding performance of the single-layer metal mesh transparent conductive films (SMMTCFs) based on the crack template method, the preparation of double-layer metal mesh transparent conductive films (DMMTCFs) by using the crack template method is studied. The double-layer cracked templates are prepared by spin-coating crack glue on both sides of the transparent substrate and by pulling the transparent substrate from the cracked adhesive solution with a certain rate to obtain the corresponding double-layer cracked templates, respectively. After obtaining the double-layer crack templates by the spin-coating method and the pulling method, respectively, the corresponding DMMTCF samples are obtained by metal deposition and degumming process. First, the performances of single-layer and double-layer metal mesh samples prepared by the spin-coating method under the same conditions are measured and compared with each other, and the optical transmittance of the double-layer structure decreases by nearly 10.9% compared with that of the single-layer structure, while the electromagnetic shielding effectiveness in the Ku band (12–18 GHz) increases by 30 dB. In addition, the double-layer metal mesh sample prepared by the pulling method is also tested. Compared with the single-layer metal mesh sample prepared under the same conditions, the double-layer structure can improve electromagnetic shielding effectiveness in the Ku band by 20 dB under the premise of losing 8.38% optical transmittance. The measurement results show that the electromagnetic shielding performance of the double-layer metal mesh transparent conductive films can be significantly improved at the expense of some optical transmittance performances. Through the preparation and performance study of DMMTCFs based on the cracked template method, the low-cost advantage of the cracked template method can be fully utilized to prepare DMMTCFs with high electromagnetic shielding performance.
      Corresponding author: ZHENG Yuejun, zhengyuejun18@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61901493) and the Natural Science Foundation of Hunan Province, China (Grant No. 2022JJ50239).
    [1]

    Qiu L, Li L, Pan Z, Sun X, Yan W 2018 MATEC Web of Conferences 189 1003Google Scholar

    [2]

    Wang W, Bai B, Zhou Q, Ni K, Lin H 2018 Opt. Mater. Express 8 3485Google Scholar

    [3]

    Kai C, Wang K, Liu C 2019 10th EAI International Conference, WiSATS 2019, Part II Harbin, China, January 12–13, 2019 pp656–660Google Scholar

    [4]

    Shi K, Su J, Hu K, Liang H 2020 J. Mater. Sci. Mater. Electron. 31 11646Google Scholar

    [5]

    Corredores Y, Besnier P, Castel X, Sol J, Dupeyrat C, Foutrel P 2017 IEEE Trans. Electromagn. Compat. 59 1070Google Scholar

    [6]

    Zhang Y, Dong H, Li Q, Mou N, Chen L, Zhang L 2019 RSC Adv. 9 22282Google Scholar

    [7]

    Smith H A, Rebbert M, Sternberg O 2003 Appl. Phys. Lett. 82 3605Google Scholar

    [8]

    Wang H, Lu Z, Liu Y, Tan J, Ma L, Lin S 2017 Opt. Lett. 42 1620Google Scholar

    [9]

    Gu J, Hu S, Ji H, Feng H, Zhao W, Wei J, Li M 2020 Nanotechnology 31 185303Google Scholar

    [10]

    Kaipa C S, Yakovlev A B, Medina F, Mesa F, Butler C A, Hibbins A P 2010 Opt. Express 18 13309Google Scholar

    [11]

    Lu Z, Wang H, Tan J, Lin S 2014 Appl. Phys. Lett. 105 241904Google Scholar

    [12]

    Lu Z, Liu Y, Wang H, Tan J 2016 Appl. Opt. 55 5372Google Scholar

    [13]

    廖敦微, 郑月军, 崔浩, 寸铁, 付云起 2022 光学精密工程 30 1310Google Scholar

    Liao D W, Zheng Y J, Cui H, Cun T, Fu Y Q 2022 Opt. Precis. Eng. 30 1310Google Scholar

    [14]

    Jiang Z, Zhao S, Huang W, Chen L, Liu Y H 2020 Opt. Express 28 26531Google Scholar

    [15]

    Rao K D M, Hunger C, Gupta R, Kulkarni G U, Thelakkat M 2014 Phys. Chem. Chem. Phys. 16 15107Google Scholar

    [16]

    Han B, Pei K, Huang Y, Zhang X, Rong Q, Lin Q, Guo Y, Sun T, Guo C, Carnahan D, Giersig M, Wang Y, Gao J, Ren Z, Kempa K 2014 Adv. Mater. 26 873Google Scholar

    [17]

    Kiruthika S, Gupta R, Rao K D M, Chakraborty S, Padmavathy N, Kulkarni G U 2014 J. Mater. Chem. C 2 2089Google Scholar

    [18]

    肖宗湖, 王新莲, 韩春, 张帅旗, 付爽, 余玉玲 2018 新余学院学报 23 1Google Scholar

    Xiao Z H, Wang X L, Han C, Zhang S Q, Fu S, Yu Y L 2018 J. Xinyu Univ. 23 1Google Scholar

    [19]

    Han Y, Lin J, Liu Y, Fu H, Ma Y, Jin P, Tan J 2016 Sci. Rep. 6 25601Google Scholar

    [20]

    Kim Y, Tak Y, Park S, Kim H 2017 Nanomaterials 7 214Google Scholar

    [21]

    Muzzillo C P, Reese M O, Mansfield L M 2020 Langmuir 36 4630Google Scholar

    [22]

    廖敦微, 郑月军, 陈强, 丁亮, 高冕, 付云起 2022 71 154201Google Scholar

    Liao D W, Zheng Y J, Chen Q, Ding L, Gao M, Fu Y Q 2022 Acta Phy. Sin. 71 154201Google Scholar

    [23]

    Yang C, Merlo J M, Kong J, Xian Z, Han B, Zhou G, Gao J, Burns M J, Kempa K, Naughton M J 2018 Phys. Status Solidi A 215 1700504Google Scholar

    [24]

    Voronin A S, Fadeev Y V, Govorun I V, Simunin M, Tambasov I A, Karpova D V, Smolyarova T E, Lukyanenko A V, Karacharov A, Nemtsev I V, Khartov S V 2021 J. Mater. Sci. 56 14741Google Scholar

    [25]

    Voronin A S, Fadeev Y V, Makeev M O, Mikhalev P A, Osipkov A S, Provatorov A S, Ryzhenko D S, Yurkov G Y, Simunin Ml M, Karpova D V, Lukyanenko A V, Kokh D, Bainov D, Tambasov I A, Nedelin S V, Zolotovsky N A, Khartov S V 2022 Materials 15 1449Google Scholar

  • 图 1  双层裂纹模板的金相显微镜观测结果图 (a) 10×镜头下的正面裂纹图案; (b) 20×镜头下的正面裂纹图案; (c) 10×镜头下的背面裂纹图案; (d) 20×镜头下的背面裂纹图案

    Figure 1.  Metallographic microscope observation pattern of the double-layer crack template: (a) Top crack pattern under 10× lens; (b) top crack pattern under 20× lens; (c) bottom crack pattern under 10× lens; (d) bottom crack pattern under 20× lens.

    图 2  双层金属沉积样品示意图

    Figure 2.  Schematic of the double-layer metal deposition sample.

    图 3  双层金属沉积样品的金相显微镜观测结果图 (a) 10×镜头下的正面金属沉积图案; (b) 20×镜头下的正面金属沉积图案; (c) 10×镜头下的背面金属沉积图案; (d) 20×镜头下的背面金属沉积图案

    Figure 3.  Metallographic microscope observation pattern of the double-layer metal deposition: (a) Top metal deposition pattern under 10× lens; (b) top metal deposition pattern under 20× lens; (c) bottom metal deposition pattern under 10× lens; (d) bottom metal deposition pattern under 20× lens.

    图 4  双层MMTCF样品示意图

    Figure 4.  Diagram of the double-layer MMTCF sample.

    图 5  双层金属网格样品的金相显微镜观测结果图 (a) 10×镜头下的正面金属网格图案; (b) 20×镜头下的正面金属网格图案; (c) 10×镜头下的背面金属网格图案; (d) 20×镜头下的背面金属网格图案

    Figure 5.  Metallographic microscope observation pattern of the double-layer metal mesh: (a) Top metal mesh pattern under 10× lens; (b) top metal mesh pattern under 20× lens; (c) bottom metal mesh pattern under 10× lens; (d) bottom metal mesh pattern under 20× lens.

    图 6  提拉法制备裂纹模板示意图

    Figure 6.  Schematic of crack template prepared by pulling method.

    图 7  提拉法制备的双层裂纹模板的金相显微镜观测结果图 (a) 20×镜头下的正面裂纹图案; (b) 50×镜头下的正面裂纹图案; (c) 20×镜头下的背面裂纹图案; (d) 50×镜头下的背面裂纹图案

    Figure 7.  Metallographic microscope observation pattern of double-layer crack template by pulling method: (a) Top crack pattern under 20× lens; (b) top crack pattern under 50× lens; (c) bottom crack pattern under 20× lens; (d) bottom crack pattern under 50× lens.

    图 8  提拉法制备的双层金属沉积样品示意图

    Figure 8.  Diagram of the double-layer metal deposition by pulling method.

    图 9  提拉法制备双层金属沉积样品的金相显微镜观测结果图 (a) 20×镜头下的正面金属沉积图案; (b) 50×镜头下的正面金属沉积图案; (c) 20×镜头下的背面金属沉积图案; (d) 50×镜头下的背面金属沉积图案

    Figure 9.  Metallographic microscope observation pattern of the double-layer metal deposition by pulling method: (a) Top metal deposition pattern under 20× lens; (b) top metal deposition pattern under 50× lens; (c) bottom metal deposition pattern under 20× lens; (d) bottom metal deposition pattern under 50× lens.

    图 10  提拉法制备的双层MMTCF样品示意图

    Figure 10.  Diagram of the double-layer MMTCF sample by pulling method.

    图 11  提拉法制备的双层金属网格样品的金相显微镜观测结果图 (a) 20×镜头下的正面金属网格图案; (b) 50×镜头下的正面金属网格图案; (c) 20×镜头下的背面金属网格图案; (d) 50×镜头下的背面金属网格图案

    Figure 11.  Metallographic microscope observation pattern of the double-layer metal mesh by pulling method: (a) Top metal mesh pattern under 20× lens; (b) top metal mesh pattern under 50× lens; (c) bottom metal mesh pattern under 20× lens; (d) bottom metal mesh pattern under 50× lens

    图 12  双层MMTCF样品的方阻测试结果

    Figure 12.  Square resistance measurement results of the double-layer metal mesh sample.

    图 13  双层MMTCF样品屏蔽效能测试结果对比

    Figure 13.  Comparison of electromagnetic shielding effectiveness results for the double-layer metal mesh sample.

    图 14  双层MMTCF样品透光率测试结果对比

    Figure 14.  Comparison of optical transmittance results for the double-layer metal mesh sample.

    图 15  提拉法制备的双层金属网格样品方阻测试结果

    Figure 15.  Square resistance measurement results of the double-layer metal mesh sample by pulling method

    图 16  提拉法制备的双层MMTCF样品的电磁屏蔽效能测试结果对比

    Figure 16.  Comparison of electromagnetic shielding effectiveness results for the double-layer metal mesh sample by pulling method.

    图 17  提拉法制备的双层MMTCF样品透光率测试结果对比

    Figure 17.  Comparison of optical transmittance results for the double-layer metal mesh sample by pulling method.

    图 18  提拉速度与裂纹尺寸分布的关系曲线

    Figure 18.  Relationship curve between the pulling speed and the crack size distribution.

    Baidu
  • [1]

    Qiu L, Li L, Pan Z, Sun X, Yan W 2018 MATEC Web of Conferences 189 1003Google Scholar

    [2]

    Wang W, Bai B, Zhou Q, Ni K, Lin H 2018 Opt. Mater. Express 8 3485Google Scholar

    [3]

    Kai C, Wang K, Liu C 2019 10th EAI International Conference, WiSATS 2019, Part II Harbin, China, January 12–13, 2019 pp656–660Google Scholar

    [4]

    Shi K, Su J, Hu K, Liang H 2020 J. Mater. Sci. Mater. Electron. 31 11646Google Scholar

    [5]

    Corredores Y, Besnier P, Castel X, Sol J, Dupeyrat C, Foutrel P 2017 IEEE Trans. Electromagn. Compat. 59 1070Google Scholar

    [6]

    Zhang Y, Dong H, Li Q, Mou N, Chen L, Zhang L 2019 RSC Adv. 9 22282Google Scholar

    [7]

    Smith H A, Rebbert M, Sternberg O 2003 Appl. Phys. Lett. 82 3605Google Scholar

    [8]

    Wang H, Lu Z, Liu Y, Tan J, Ma L, Lin S 2017 Opt. Lett. 42 1620Google Scholar

    [9]

    Gu J, Hu S, Ji H, Feng H, Zhao W, Wei J, Li M 2020 Nanotechnology 31 185303Google Scholar

    [10]

    Kaipa C S, Yakovlev A B, Medina F, Mesa F, Butler C A, Hibbins A P 2010 Opt. Express 18 13309Google Scholar

    [11]

    Lu Z, Wang H, Tan J, Lin S 2014 Appl. Phys. Lett. 105 241904Google Scholar

    [12]

    Lu Z, Liu Y, Wang H, Tan J 2016 Appl. Opt. 55 5372Google Scholar

    [13]

    廖敦微, 郑月军, 崔浩, 寸铁, 付云起 2022 光学精密工程 30 1310Google Scholar

    Liao D W, Zheng Y J, Cui H, Cun T, Fu Y Q 2022 Opt. Precis. Eng. 30 1310Google Scholar

    [14]

    Jiang Z, Zhao S, Huang W, Chen L, Liu Y H 2020 Opt. Express 28 26531Google Scholar

    [15]

    Rao K D M, Hunger C, Gupta R, Kulkarni G U, Thelakkat M 2014 Phys. Chem. Chem. Phys. 16 15107Google Scholar

    [16]

    Han B, Pei K, Huang Y, Zhang X, Rong Q, Lin Q, Guo Y, Sun T, Guo C, Carnahan D, Giersig M, Wang Y, Gao J, Ren Z, Kempa K 2014 Adv. Mater. 26 873Google Scholar

    [17]

    Kiruthika S, Gupta R, Rao K D M, Chakraborty S, Padmavathy N, Kulkarni G U 2014 J. Mater. Chem. C 2 2089Google Scholar

    [18]

    肖宗湖, 王新莲, 韩春, 张帅旗, 付爽, 余玉玲 2018 新余学院学报 23 1Google Scholar

    Xiao Z H, Wang X L, Han C, Zhang S Q, Fu S, Yu Y L 2018 J. Xinyu Univ. 23 1Google Scholar

    [19]

    Han Y, Lin J, Liu Y, Fu H, Ma Y, Jin P, Tan J 2016 Sci. Rep. 6 25601Google Scholar

    [20]

    Kim Y, Tak Y, Park S, Kim H 2017 Nanomaterials 7 214Google Scholar

    [21]

    Muzzillo C P, Reese M O, Mansfield L M 2020 Langmuir 36 4630Google Scholar

    [22]

    廖敦微, 郑月军, 陈强, 丁亮, 高冕, 付云起 2022 71 154201Google Scholar

    Liao D W, Zheng Y J, Chen Q, Ding L, Gao M, Fu Y Q 2022 Acta Phy. Sin. 71 154201Google Scholar

    [23]

    Yang C, Merlo J M, Kong J, Xian Z, Han B, Zhou G, Gao J, Burns M J, Kempa K, Naughton M J 2018 Phys. Status Solidi A 215 1700504Google Scholar

    [24]

    Voronin A S, Fadeev Y V, Govorun I V, Simunin M, Tambasov I A, Karpova D V, Smolyarova T E, Lukyanenko A V, Karacharov A, Nemtsev I V, Khartov S V 2021 J. Mater. Sci. 56 14741Google Scholar

    [25]

    Voronin A S, Fadeev Y V, Makeev M O, Mikhalev P A, Osipkov A S, Provatorov A S, Ryzhenko D S, Yurkov G Y, Simunin Ml M, Karpova D V, Lukyanenko A V, Kokh D, Bainov D, Tambasov I A, Nedelin S V, Zolotovsky N A, Khartov S V 2022 Materials 15 1449Google Scholar

  • [1] Dang Xin-Zhi, Zhang Ren-Gang, Zhang Peng, Yu Run-Sheng, Kuang Peng, Cao Xing-Zhong, Wang Bao-Yi. Effect of different sulfur pressure annealing on properties of sputtering-deposited ZnS thin films. Acta Physica Sinica, 2023, 72(3): 034207. doi: 10.7498/aps.72.20221737
    [2] Liao Dun-Wei, Zheng Yue-Jun, Chen Qiang, Ding Liang, Gao Mian, Fu Yun-Qi. Preparation and performance improvement of metal grid transparent conductive film based on crack template method. Acta Physica Sinica, 2022, 71(15): 154201. doi: 10.7498/aps.71.20220101
    [3] Chen Ming, Zhou Xi-Ying, Mao Xiu-Juan, Shao Jia-Jia, Yang Guo-Liang. Influence of external magnetic field on properties of aluminum-doped zinc oxide films prepared by RF magnetron sputtering. Acta Physica Sinica, 2014, 63(9): 098103. doi: 10.7498/aps.63.098103
    [4] Jiang Qiang, Mao Xiu-Juan, Zhou Xi-Ying, Chang Wen-Long, Shao Jia-Jia, Chen Ming. Influence of applied magnetic field on properties of silicon nitride thin film with light trapping structure prepared by R.F. magnetron sputtering. Acta Physica Sinica, 2013, 62(11): 118103. doi: 10.7498/aps.62.118103
    [5] Tong Guo-Xiang, Li Yi, Wang Feng, Huang Yi-Ze, Fang Bao-Ying, Wang Xiao-Hua, Zhu Hui-Qun, Liang Qian, Yan Meng, Qin Yuan, Ding Jie, Chen Shao-Juan, Chen Jian-Kun, Zheng Hong-Zhu, Yuan Wen-Rui. Preparation of W-doped VO2/FTO composite thin films by DC magnetron sputtering and characterization analyses of the films. Acta Physica Sinica, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [6] Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Gao Yan-Qing, Zhao Shou-Ren, Wang Shan-Li, Chu Jun-Hao. Effects of different substrates and CdCl2 treatment on the properties of CdS thin films deposited by magnetron sputtering. Acta Physica Sinica, 2013, 62(15): 158107. doi: 10.7498/aps.62.158107
    [7] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [8] Su Yuan-Jun, Xu Jun, Zhu Ming, Fan Peng-Hui, Dong Chuang. Hydrogenated poly-crystalline silicon thin films deposited by inductively coupled plasma assisted pulsed dc twin magnetron sputtering. Acta Physica Sinica, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [9] Wang Yong-Jun, Li Hong-Xuan, Ji Li, Liu Xiao-Hong, Wu Yan-Xia, Zhou Hui-Di, Chen Jian-Min. Preparation and properties of graphite-like carbon films fabricated by unbalanced magnetron sputtering. Acta Physica Sinica, 2012, 61(5): 056103. doi: 10.7498/aps.61.056103
    [10] Ju Dong-Ying, Ding Wan-Yu, Chai Wei-Ping, Wang Hua-Lin. Composition and crystal structure of N doped TiO2 film deposited with different O2 flow rates. Acta Physica Sinica, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [11] Cao Yue-Hua, Di Guo-Qing. Analysis of Y2O3 doped TiO2 films topography prepared by radio frequency magnetron sputtering. Acta Physica Sinica, 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [12] Li Lin-Na, Chen Xin-Liang, Wang Fei, Sun Jian, Zhang De-Kun, Geng Xin-Hua, Zhao Ying. Effects of hydrogen flux on aluminum doped zinc thin films by pulsed magnetron sputtering. Acta Physica Sinica, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [13] Ding Wan-Yu, Xu Jun, Lu Wen-Qi, Deng Xin-Lu, Dong Chuang. An XPS study on the structure of SiNx film deposited by microwave ECR magnetron sputtering. Acta Physica Sinica, 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [14] Li Yue-Fu, Ye Hui, Fu Xing-Hai. RF magnetron sputtering deposition growth of highly orientated strontium barium niobate thin films. Acta Physica Sinica, 2008, 57(2): 1229-1235. doi: 10.7498/aps.57.1229
    [15] Liu Feng, Meng Yue-Dong, Ren Zhao-Xing, Shu Xing-Sheng. Characterization of ZrN films deposited by ICP enhanced RF magnetron sputtering. Acta Physica Sinica, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [16] The effect of temperature of substrate and oxygen partial pressure on V2O5 films fabricated by magnetron sputtering. Acta Physica Sinica, 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [17] Liu Zhi-Wen, Gu Jian-Feng, Sun Cheng-Wei, Zhang Qing-Yu. Study on nucleation and dynamic scaling of morphological evolution of ZnO film deposition by reactive magnetron sputtering. Acta Physica Sinica, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [18] Ding Wan-Yu, Xu Jun, Li Yan-Qin, Piao Yong, Gao Peng, Deng Xin-Lü, Dong Chuang. Characterization of silicon nitride films prepared by MW-ECR magnetron sputtering. Acta Physica Sinica, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [19] Zhou Xiao-Li, Du Pi-Yi. CaCu33Ti44O1212 films prepared by magnetron s puttering. Acta Physica Sinica, 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [20] . Acta Physica Sinica, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
Metrics
  • Abstract views:  890
  • PDF Downloads:  34
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2024
  • Accepted Date:  25 November 2024
  • Available Online:  27 November 2024
  • Published Online:  05 January 2025

/

返回文章
返回
Baidu
map