搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于裂纹模板法的金属网格透明导电薄膜制备及性能改进

廖敦微 郑月军 陈强 丁亮 高冕 付云起

引用本文:
Citation:

基于裂纹模板法的金属网格透明导电薄膜制备及性能改进

廖敦微, 郑月军, 陈强, 丁亮, 高冕, 付云起

Preparation and performance improvement of metal grid transparent conductive film based on crack template method

Liao Dun-Wei, Zheng Yue-Jun, Chen Qiang, Ding Liang, Gao Mian, Fu Yun-Qi
PDF
HTML
导出引用
  • 基于裂纹模板法制备了一种高屏蔽性能的金属网格透明导电薄膜. 采用现有裂纹模板法制备得到的金属网格透明导电薄膜, 其金属网格厚度较薄, 屏蔽性能有待改进. 本文在研究了裂纹材料的旋涂转速对龟裂图案的影响关系分布曲线中, 增加了缝隙深度因子, 选取了合适的裂纹材料和旋涂方案, 制备得到理想的随机图案分布的裂纹模板. 通过磁控溅射法在裂纹模板缝隙内外沉积厚度为1 μm的金属层, 引入了超声波清洗结合有机溶剂的方法, 高效去除裂纹胶模板后, 得到了金属网格透明导电薄膜样品. 实测的金属网格透明导电薄膜样品透光率超过85%, 同时方阻值保持在2.8 Ω/□左右, 具有良好的透光和电磁屏蔽性能. 通过制备加厚金属网格透明导电薄膜改进了屏蔽性能, 为后续基于裂纹模板法制备高屏蔽性能金属网格透明导电薄膜提供了参考.
    A metal mesh transparent conductive film with high shielding performance is prepared based on the crack template method. The shielding performance of the metal mesh transparent conductive film prepared by the existing crack template method needs improving due to the thin thickness of the metal mesh. In this work, the crack depth factor is added to the distribution curve of the relationship between the spin coating speed of the cracked material and the crack pattern, and the appropriate crack material and spin coating scheme are selected to prepare an ideal crack template with random pattern distribution. A metal layer with a thickness of 1 μm is deposited inside and outside the crack template gap by magnetron sputtering, and the method of ultrasonic cleaning combined with organic solvent is introduced to efficiently remove the crack glue template, and a metal mesh transparent conductive film sample is obtained. The measured light transmittance of the metal mesh transparent conductive film sample exceeds 85% while the square resistance value remains around 2.8 Ω/□, which has good light transmittance and electromagnetic shielding performance. The shielding performance is improved by preparing thickened metal mesh transparent conductive films, which provide a reference for the subsequent preparation of metal mesh transparent conductive films with high shielding performance based on the crack template method.
      通信作者: 郑月军, zhengyuejun18@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61901493, 61901492)资助的课题.
      Corresponding author: Zheng Yue-Jun, zhengyuejun18@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901493, 61901492).
    [1]

    Rao K D M, Gupta R, Kulkarni G U 2014 Adv. Mater. Inter. 1 1400090Google Scholar

    [2]

    Rao K D M, Hunger C, Gupta R, Kulkarni G U, Thelakkat M 2014 Phys. Chem. Chem. Phys. 16 15107Google Scholar

    [3]

    Seo K W, Noh Y J, Na S I, Kim H K 2016 Sol. Energy Mater Sol. Cells 155 51Google Scholar

    [4]

    Jang J, Im H G, Jin J, Lee J, Lee J Y, Bae B S 2016 ACS Appl. Mater. Inter. 8 27035Google Scholar

    [5]

    Li L J, Zhang B, Zou B H, Xie R J, Zhang T, Li S, Zheng B, Wu J S, Weng J N, Zhang W N, Huang W, Huo F W 2017 ACS Appl. Mater. Inter. 9 39110Google Scholar

    [6]

    Kim W K, Lee S, Lee H D, Hee Park I, Seong Bae J, Woo Lee T, Kim J Y, Hun Park J, Chan Cho Y, Ryong Cho C, Jeong S Y 2015 Sci. Rep. 5 10715Google Scholar

    [7]

    Han B, Pei K, Huang Y L, Zhang X J, Rong Q K, Lin Q G, Guo Y F, Sun T Y, Guo C F, Carnahan D, Giersig M, Wang Y, Gao J W, Ren Z F, Kempa K 2014 Adv. Mater. 26 873Google Scholar

    [8]

    Gao J W, Xian Z K, Zhou G F, Liu J M, Kempa K 2017 Adv. Funct. Mater. 28 1705023Google Scholar

    [9]

    Han Y, Lin J, Liu Y, Fu H, Ma Y, Jin P, Tan J B 2016 Sci. Rep. 6 25601Google Scholar

    [10]

    Kiruthika S, Gupta R, Rao K D M, Chakraborty S, Padmavathy N, Kulkarni G U 2014 J. Mater. Chem. C 2 2089Google Scholar

    [11]

    Xian Z K, Han B, Li S R, Yang C B, Wu S J, Lu X B, Gao X S, Zeng M, Wang Q M, Bai P F, Naughton M J, Zhou G F, Liu J M, Kempa K, Gao J W 2017 Adv. Mater. Technol. 2 1700061Google Scholar

    [12]

    Li P, Zhao Y, Ma J G, Yang Y, Xu H Y, Liu Y C 2020 Adv. Mater. Technol. 5 2070008Google Scholar

    [13]

    Lee D, Go S, Hwang G, Chin B D, Lee D H 2013 Langmuir 29 12259Google Scholar

    [14]

    Kiruthika S, Gupta R, Kulkarni G U 2014 RSC Adv. 4 49745Google Scholar

    [15]

    Gupta N, Rao K D M, Gupta R, Krebs F C, Kulkarni G U 2017 ACS Appl. Mater. Inter. 9 8634Google Scholar

    [16]

    Yang C, Merlo J M, Kong J, Xian Z K, Han B, Zhou G F, Gao J W, Burns M J, Kempa K, Naughton M J 2018 Phys. Status Solidi A 215 1700504Google Scholar

    [17]

    Han B, Peng Q, Li R P, Rong Q K, Ding Y, Akinoglu E M, Wu, X Y, Wang X, Lu X B, Wang Q, Zhou G F, Liu J M, Ren Z F, Giersig M, Herczynski A, Kempa K, Gao J W 2016 Nat. Commun. 7 12825Google Scholar

    [18]

    Qiang Y X, Zhu C H, Wu Y P, Cui S, Liu Y 2018 RSC Adv. 8 23066Google Scholar

    [19]

    Dong G P, Liu S, Pan M Q, Zhou G F, Liu J M, Kempa K, Gao J W 2019 Adv. Mater. Technol. 4 1900056Google Scholar

    [20]

    Peng Q, Li S R, Han B, Rong Q K, Lu X B, Wang Q M, Zeng M, Zhou G F, Liu J M, Kempa K, Gao J W 2016 Adv. Mater. Technol. 1 1600095Google Scholar

    [21]

    Guo C F, Sun T Y, Liu Q H, Suo Z G, Ren Z F 2014 Nat. Commun. 5 3121Google Scholar

    [22]

    Kiruthika S, Rao K D M, Kumar A, Gupta R, Kulkarni G U 2014 Mater. Res. Express 1 26301Google Scholar

    [23]

    Voronin A S, Fadeev Y V, Dobrosmyslov S S, Simunin M M, Khartov S V 2020 J. Phys. Conf. Ser. 1679 042087Google Scholar

  • 图 1  不同观测尺度下裂纹图形的电子显微镜观测结果 (a) 100 μm; (b) 200 μm; (c) 500 μm; (d) 1 mm

    Fig. 1.  Electron microscope observation results of the crack pattern at different observation scales: (a) 100 μm; (b) 200 μm; (c) 500 μm; (d) 1 mm.

    图 2  磁控溅射后沉积金属样品图

    Fig. 2.  Diagram of the metal sample deposited after magnetron sputtering.

    图 3  在不同观测尺度下, 磁控溅射后沉积金属裂纹图案观测结果图  (a) 5 μm; (b) 20 μm; (c) 100 μm; (d) 1 mm

    Fig. 3.  Observation diagram of the metal crack pattern deposited after magnetron sputtering at different observation scales: (a) 5 μm; (b) 20 μm; (c) 100 μm; (d) 1 mm.

    图 4  金属网格透明导电薄膜样品图

    Fig. 4.  Diagram of metal mesh transparent conductive film.

    图 5  在不同观测尺度下, 金属网格透明导电薄膜样品电子显微镜观测结果图  (a) 100 μm; (b) 200 μm; (c) 500 μm; (d) 1 mm

    Fig. 5.  Electron microscope observation of metal mesh transparent conductive film sample at different observation scales: (a) 100 μm; (b) 200 μm; (c) 500 μm; (d) 1 mm.

    图 6  金属网格透明导电薄膜制备过程中电子显微镜观测结果图 (a) 10 μm观测尺度下裂纹图案; (b) 10 μm观测尺度下金属沉积图案; (c) 10 μm观测尺度下金属网格图案; (d) 50 μm观测尺度下金属网格图案

    Fig. 6.  Electron microscope observation results during the preparation of metal mesh transparent conductive films: (a) Crack pattern at 10 μm observation scale; (b) metal deposition patterns at 10 μm observation scale; (c) metal mesh pattern at 10 μm observation scale; (d) metal mesh pattern at 50 μm observation scale.

    图 7  制备得到的金属网格样品的方阻测试曲线结果图

    Fig. 7.  Results of the square resistance test curve of the prepared metal mesh sample.

    图 8  制备得到的金属网格样品的电磁屏蔽效能结果图

    Fig. 8.  Results of electromagnetic shielding effectiveness of the prepared metal mesh samples.

    图 9  金属网格薄膜样品的透光率测试结果图

    Fig. 9.  Light transmittance test results of metal mesh film samples.

    图 10  裂纹胶旋涂转速与裂纹周期、缝宽及缝深的关系曲线图

    Fig. 10.  Relationship curves of the rotational speed of the crack adhesive spin coating to the crack period, crack width and crack depth

    表 1  文献工作性能比较

    Table 1.  Performance comparison among this work and other literatures.

    文献溅射金属/厚度方阻值/(Ω·□–1)透光率
    [2]Ag/55 nm1086%
    [3]Al/100 nm3.9583.1%
    [7]Ag/60 nm4.282%
    [10]Cu/300 nm3.875%
    [15]Ni/200 nm1065.45%
    [16]Ag/100 nm383%
    [21]Au/80 nm2082.5%
    [22]Ag/100 nm3—682%
    [23]Ag/200 nm5.885.3%
    本文工作Cr/50 nm, Cu/1 μm2.885.31%
    下载: 导出CSV
    Baidu
  • [1]

    Rao K D M, Gupta R, Kulkarni G U 2014 Adv. Mater. Inter. 1 1400090Google Scholar

    [2]

    Rao K D M, Hunger C, Gupta R, Kulkarni G U, Thelakkat M 2014 Phys. Chem. Chem. Phys. 16 15107Google Scholar

    [3]

    Seo K W, Noh Y J, Na S I, Kim H K 2016 Sol. Energy Mater Sol. Cells 155 51Google Scholar

    [4]

    Jang J, Im H G, Jin J, Lee J, Lee J Y, Bae B S 2016 ACS Appl. Mater. Inter. 8 27035Google Scholar

    [5]

    Li L J, Zhang B, Zou B H, Xie R J, Zhang T, Li S, Zheng B, Wu J S, Weng J N, Zhang W N, Huang W, Huo F W 2017 ACS Appl. Mater. Inter. 9 39110Google Scholar

    [6]

    Kim W K, Lee S, Lee H D, Hee Park I, Seong Bae J, Woo Lee T, Kim J Y, Hun Park J, Chan Cho Y, Ryong Cho C, Jeong S Y 2015 Sci. Rep. 5 10715Google Scholar

    [7]

    Han B, Pei K, Huang Y L, Zhang X J, Rong Q K, Lin Q G, Guo Y F, Sun T Y, Guo C F, Carnahan D, Giersig M, Wang Y, Gao J W, Ren Z F, Kempa K 2014 Adv. Mater. 26 873Google Scholar

    [8]

    Gao J W, Xian Z K, Zhou G F, Liu J M, Kempa K 2017 Adv. Funct. Mater. 28 1705023Google Scholar

    [9]

    Han Y, Lin J, Liu Y, Fu H, Ma Y, Jin P, Tan J B 2016 Sci. Rep. 6 25601Google Scholar

    [10]

    Kiruthika S, Gupta R, Rao K D M, Chakraborty S, Padmavathy N, Kulkarni G U 2014 J. Mater. Chem. C 2 2089Google Scholar

    [11]

    Xian Z K, Han B, Li S R, Yang C B, Wu S J, Lu X B, Gao X S, Zeng M, Wang Q M, Bai P F, Naughton M J, Zhou G F, Liu J M, Kempa K, Gao J W 2017 Adv. Mater. Technol. 2 1700061Google Scholar

    [12]

    Li P, Zhao Y, Ma J G, Yang Y, Xu H Y, Liu Y C 2020 Adv. Mater. Technol. 5 2070008Google Scholar

    [13]

    Lee D, Go S, Hwang G, Chin B D, Lee D H 2013 Langmuir 29 12259Google Scholar

    [14]

    Kiruthika S, Gupta R, Kulkarni G U 2014 RSC Adv. 4 49745Google Scholar

    [15]

    Gupta N, Rao K D M, Gupta R, Krebs F C, Kulkarni G U 2017 ACS Appl. Mater. Inter. 9 8634Google Scholar

    [16]

    Yang C, Merlo J M, Kong J, Xian Z K, Han B, Zhou G F, Gao J W, Burns M J, Kempa K, Naughton M J 2018 Phys. Status Solidi A 215 1700504Google Scholar

    [17]

    Han B, Peng Q, Li R P, Rong Q K, Ding Y, Akinoglu E M, Wu, X Y, Wang X, Lu X B, Wang Q, Zhou G F, Liu J M, Ren Z F, Giersig M, Herczynski A, Kempa K, Gao J W 2016 Nat. Commun. 7 12825Google Scholar

    [18]

    Qiang Y X, Zhu C H, Wu Y P, Cui S, Liu Y 2018 RSC Adv. 8 23066Google Scholar

    [19]

    Dong G P, Liu S, Pan M Q, Zhou G F, Liu J M, Kempa K, Gao J W 2019 Adv. Mater. Technol. 4 1900056Google Scholar

    [20]

    Peng Q, Li S R, Han B, Rong Q K, Lu X B, Wang Q M, Zeng M, Zhou G F, Liu J M, Kempa K, Gao J W 2016 Adv. Mater. Technol. 1 1600095Google Scholar

    [21]

    Guo C F, Sun T Y, Liu Q H, Suo Z G, Ren Z F 2014 Nat. Commun. 5 3121Google Scholar

    [22]

    Kiruthika S, Rao K D M, Kumar A, Gupta R, Kulkarni G U 2014 Mater. Res. Express 1 26301Google Scholar

    [23]

    Voronin A S, Fadeev Y V, Dobrosmyslov S S, Simunin M M, Khartov S V 2020 J. Phys. Conf. Ser. 1679 042087Google Scholar

  • [1] 陆杨丹, 吕建国, 杨汝琪, 陆波静, 朱丽萍, 叶志镇. 透明导电ZnO:Al/Cu网格复合膜及其电加热性能.  , 2022, 71(18): 187304. doi: 10.7498/aps.71.20220529
    [2] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能.  , 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [3] 唐华杰, 张晋敏, 金浩, 邵飞, 胡维前, 谢泉. 溅射功率对金属锰膜光学性质的影响.  , 2013, 62(24): 247803. doi: 10.7498/aps.62.247803
    [4] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积.  , 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [5] 王永军, 李红轩, 吉利, 刘晓红, 吴艳霞, 周惠娣, 陈建敏. 非平衡磁控溅射制备类石墨碳膜及性能研究.  , 2012, 61(5): 056103. doi: 10.7498/aps.61.056103
    [6] 沈向前, 谢泉, 肖清泉, 陈茜, 丰云. 磁控溅射辉光放电特性的模拟研究.  , 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [7] 李林娜, 陈新亮, 王斐, 孙建, 张德坤, 耿新华, 赵颖. H2 气对脉冲磁控溅射铝掺杂氧化锌薄膜性能的影响.  , 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [8] 曹月华, 狄国庆. 磁控溅射制备Y2O3-TiO2薄膜形貌的研究.  , 2011, 60(3): 037702. doi: 10.7498/aps.60.037702
    [9] 牟宗信, 牟晓东, 贾莉, 王春, 董闯. 非平衡磁控溅射双势阱静电波动及其共振耦合.  , 2010, 59(10): 7164-7169. doi: 10.7498/aps.59.7164
    [10] 丁万昱, 徐军, 陆文琪, 邓新绿, 董闯. 微波ECR磁控溅射制备SiNx薄膜的XPS结构研究.  , 2009, 58(6): 4109-4116. doi: 10.7498/aps.58.4109
    [11] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究.  , 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [12] 李跃甫, 叶 辉, 傅兴海. 高择优取向铌酸锶钡薄膜的射频磁控溅射制备.  , 2008, 57(2): 1229-1235. doi: 10.7498/aps.57.1229
    [13] 辛 萍, 孙成伟, 秦福文, 文胜平, 张庆瑜. 反应磁控溅射ZnO/MgO多量子阱的光致荧光光谱分析.  , 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [14] 张 辉, 刘应书, 刘文海, 王宝义, 魏 龙. 基片温度与氧分压对磁控溅射制备氧化钒薄膜的影响.  , 2007, 56(12): 7255-7261. doi: 10.7498/aps.56.7255
    [15] 胡 冰, 李晓娜, 董 闯, 姜 辛. 磁控溅射法合成纳米β-FeSi2/a-Si多层结构.  , 2007, 56(12): 7188-7194. doi: 10.7498/aps.56.7188
    [16] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究.  , 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [17] 丁万昱, 徐 军, 李艳琴, 朴 勇, 高 鹏, 邓新绿, 董 闯. 微波ECR等离子体增强磁控溅射制备SiNx薄膜及其性能分析.  , 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [18] 周小莉, 杜丕一. 磁控溅射法制备的CaCu3Ti4O12薄膜.  , 2005, 54(4): 1809-1813. doi: 10.7498/aps.54.1809
    [19] 牟宗信, 李国卿, 秦福文, 黄开玉, 车德良. 非平衡磁控溅射系统离子束流磁镜效应模型.  , 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [20] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜.  , 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
计量
  • 文章访问数:  5429
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-04-02
  • 上网日期:  2022-07-16
  • 刊出日期:  2022-08-05

/

返回文章
返回
Baidu
map