Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Firing modes and predefined-time chaos synchronization of novel memristor-coupled heterogeneous neuron

Jia Mei-Mei Cao Jia-Wei Bai Ming-Ming

Citation:

Firing modes and predefined-time chaos synchronization of novel memristor-coupled heterogeneous neuron

Jia Mei-Mei, Cao Jia-Wei, Bai Ming-Ming
PDF
HTML
Get Citation
  • The processing and transmission of biological neural information are realized via firing activities of neurons in different regions of brain. Memristors are regarded as ideal devices for emulating biological synapses because of their nanoscale size, non-volatility and synapse-like plasticity. Hence, investigating firing modes of memristor-coupled heterogeneous neurons is significant. This work focuses on modelling, firing modes and chaos synchronization of a memristor-coupled heterogeneous neuron. First, a novel locally active memristor is proposed, and its frequency characteristics, local activity, and non-volatility are analyzed. Then, the novel locally active memristor is introduced into the two-dimensional HR neuron and the two-dimensional FHN neuron to construct a novel memristor-coupled heterogeneous neuron model. In numerical simulations, by changing the coupling strength, it is found that the model exhibits the periodic spike firing mode, the chaotic spike firing mode, the periodic burst firing mode, and the random burst firing mode. Besides, the dynamic behavior of the novel memristor-coupled heterogeneous neuron can switch between periodic behavior and chaotic behavior by changing the initial state. Finally, based on the Lyapunov stability theory and the predefined-time stability theory, a novel predefined-time synchronization strategy is proposed and used to realize the chaos synchronization of the novel memristor-coupled heterogeneous neuron. The results show that compared with a finite-time synchronization strategy, a fixed-time synchronization strategy and a traditional predefined-time synchronization strategy, the novel predefined-time synchronization strategy has a short actual convergence time. Studying the firing modes and chaotic synchronization of the novel memristor-coupled heterogeneous neuron can help explore the neural functions of the brain and is also important in processing the neural signal and secure communication fields.
      Corresponding author: Jia Mei-Mei, meimeijia14@163.com
    • Funds: Project supported by the Basic Scientific Research Expenses Program of Universities of Inner Mongolia Autonomous Region, China (Grant No. JY20220181) and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2024MS06006).
    [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821Google Scholar

    [2]

    Syed Ali M, Stamov G, Stamova I, Ibrahim T F, Dawood A A, Osman Birkea F M 2023 Mathematics 11 4248Google Scholar

    [3]

    Zhang J R, Lu J G, Jin X C, Yang X Y 2023 Neural Networks 167 680Google Scholar

    [4]

    Wu X, Liu S T, Wang H Y, Wang Y 2023 ISA Trans. 136 114Google Scholar

    [5]

    Ping J, Zhu S, Shi M X, Wu S M, Shen M Q, Liu X Y, Wen S P 2023 IEEE Trans. Netw. Sci. Eng. 10 3609Google Scholar

    [6]

    Beyhan S 2024 Chaos Soliton. Fract. 180 114578Google Scholar

    [7]

    Shi P, Li X, Zhang Y Q, Yan J J 2023 IEEE Trans. Circuits Syst. I-Regul. Pap. 70 1381Google Scholar

    [8]

    Chen Q, Li B, Yin W, Jiang X W, Chen X Y 2023 Chaos Soliton. Fract. 171 113440Google Scholar

    [9]

    Zhao N N, Qiao Y H, Miao J, Duan L J 2024 IEEE Trans. Fuzzy Syst. 32 1978Google Scholar

    [10]

    Zhang Y L, Yang L Q, Kou K I, Liu Y 2023 Neural Networks 165 274Google Scholar

    [11]

    Wang S S, Jian J G 2023 Chaos Soliton. Fract. 174 113790Google Scholar

    [12]

    Zhou X H, Cao J D, Wang X 2023 Neural Networks 160 97Google Scholar

    [13]

    Mahemuti R, Abdurahman A 2023 Mathematics 11 1291Google Scholar

    [14]

    Chakraborty A, Veeresha P 2024 Chaos Soliton. Fract. 182 114810Google Scholar

    [15]

    Yu F, Kong X X, Yao W, Zhang J, Cai S, Lin H R, Jin J 2024 Chaos Soliton. Fract. 179 114440Google Scholar

    [16]

    Sun W, Li B W, Wu A L, Guo W L, Wu X Q 2023 IEEE T. Cybern. 53 6277Google Scholar

    [17]

    Ding D, Tang Z, Park J H, Wang Y, Ji Z C 2023 IEEE T. Cybern. 53 887Google Scholar

    [18]

    Surendar R, Muthtamilselvan M, Ahn K 2024 Chaos Soliton. Fract. 181 114659Google Scholar

    [19]

    Saeed N A, Saleh H A, El-Ganaini W A, Awrejcewicz J, Mahmoud H A 2024 Chin. J. Phys. 88 311Google Scholar

    [20]

    Ji X Y, Dong Z K, Han Y F, Lai C S, Zhou G D, Qi D L 2023 IEEE Trans. Consum. Electron. 69 1005Google Scholar

    [21]

    Dong Z K, Ji X Y, Lai C S, Qi D L, Zhou G D, Lai L L 2023 IEEE Consum. Electron. Mag. 12 94Google Scholar

    [22]

    Liu J Y, Xiong F E, Zhou Y, Duan S K, Hu X F 2024 IEEE Trans. Cogn. Dev. Syst. 16 794Google Scholar

    [23]

    Lei Z Y, Yang J C, Qiu H S, Zhang X Z, Liu J Z 2024 Electronics 13 2229Google Scholar

    [24]

    Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. I-Regul. Pap. 68 4419Google Scholar

    [25]

    Kuwahara T, Oshio R, Kimura M, Zhang R Y, Nakashima Y 2024 Neurocomputing 593 127792Google Scholar

    [26]

    Mannan Z I, Adhikari S P, Yang C J, Budhathoki R K, Kim H, Chua L 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 3458Google Scholar

    [27]

    Chua L O 2005 Int. J. Bifurcat. Chaos 15 3435Google Scholar

    [28]

    Chua L O 2014 Semicond. Sci. Technol. 29 104001Google Scholar

    [29]

    Yan S H, Zhang Y Y, Ren Y, Sun X, Cui Y, Li L 2023 Nonlinear Dynam. 111 17547Google Scholar

    [30]

    Huang L L, Wang S T, Lei T F, Huang K Y, Li C B 2024 Int. J. Bifurcat. Chaos 34 2450022Google Scholar

    [31]

    Li C L, Wang X, Du J R, Li Z J 2023 Nonlinear Dynam. 111 21333Google Scholar

    [32]

    Wang M J, Peng J W, He S B, Zhang X, Iu H H C 2023 Fractal Fract. 7 818Google Scholar

    [33]

    Zhang S H, Zhang H L, Lin H R, Wang C 2024 Nonlinear Dynam. 112 12411Google Scholar

    [34]

    Jia J, Wang F, Zeng Z G 2022 Neurocomputing 505 413Google Scholar

    [35]

    Guo Z H, Li Z J, Wang M J, Ma M L 2023 Chin. Phys. B 32 038701Google Scholar

    [36]

    Cao H B, Wang F Q 2021 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 29 617Google Scholar

    [37]

    Liu W, Wang F Q, Ma X K 2015 Int. J. Numer. Model. 28 335Google Scholar

    [38]

    Xu B, Zou S T, Bai L B, Chen K, Zhao J 2024 Nonlinear Dynam. 112 1395Google Scholar

    [39]

    Chua L O 2018 Appl. Phys. A-Mater. Sci. Process. 124 563Google Scholar

    [40]

    Dong Y J, Wang G Y, Chen G R, Shen Y R, Ying J J 2020 Commun. Nonlinear Sci. Numer. Simul. 84 105203Google Scholar

    [41]

    Lin H R, Wang C H, Deng Q L, Xu C, Deng Z K, Zhou C 2021 Nonlinear Dynam. 106 959Google Scholar

    [42]

    Wei Z C 2011 Phys. Lett. A 376 102Google Scholar

    [43]

    包涵, 包伯成, 林毅, 王将, 武花干 2016 65 180501Google Scholar

    Bao H, Bao B C, Lin Y, Wang J, Wu H G 2016 Acta Phys. Sin. 65 180501Google Scholar

    [44]

    Gottwald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129Google Scholar

    [45]

    Bhat S P, Bernstein D S 2000 SIAM J. Control Optim. 38 751Google Scholar

    [46]

    Polyakov A 2012 IEEE Trans. Autom. Control 57 2106Google Scholar

    [47]

    Sánchez-Torres J D, Gómez-Gutiérrez D, López E, Loukianov A G 2018 IMA J. Math. Control Inf. 35 i1Google Scholar

    [48]

    Wongvanich N, Roongmuanpha N, Tangsrirat W 2023 IEEE Access 11 88388Google Scholar

    [49]

    Kang X Y, Chai L, Liu H K 2023 Int. J. Control Autom. Syst. 21 1210Google Scholar

    [50]

    Ni J K, Liu C X, Liu K, Liu L 2014 Chin. Phys. B 23 100504Google Scholar

    [51]

    Shirkavand M, Pourgholi M 2018 Chaos Soliton. Fract. 113 135Google Scholar

    [52]

    Han S 2023 J. Mar. Sci. Eng. 11 2191Google Scholar

  • 图 1  新型局部有源忆阻器的紧磁滞回线 (a) f = 20 GHz, 不同幅值; (b) Vm= 1 V, 不同频率

    Figure 1.  Pinched hysteresis loop of the novel locally active memristor: (a) Different amplitudes for f = 20 GHz; (b) different frequencies for Vm= 1 V.

    图 2  忆导函数图

    Figure 2.  Diagram of the memductance function $ G\left( \varphi \right) $.

    图 3  新型局部有源忆阻器的断电图与动态路线图

    Figure 3.  POP and DRM of the novel locally active memristor.

    图 4  (a)状态$ {\varphi _1} $切换到状态$ {\varphi _2} $(正电压脉冲的幅值Vm= 1 V); (b)低电平忆导$G\left( {{\varphi _1}} \right)$切换到高电平忆导$G\left( {{\varphi _2}} \right)$(正电压脉冲的幅值Vm= 1 V)

    Figure 4.  (a) Switching from the state $ {\varphi _1} $ to the state $ {\varphi _2} $ (a positive voltage pulse with amplitude Vm= 1 V); (b) switching from the low-level memductance $G\left( {{\varphi _1}} \right)$ to the high-level memductance $G\left( {{\varphi _2}} \right)$(a positive voltage pulse with amplitude Vm= 1 V).

    图 5  (a) 状态$ {\varphi _2} $切换到状态$ {\varphi _1} $ (负电压脉冲的幅值Vm= –2 V); (b) 高电平忆导$G\left( {{\varphi _2}} \right)$切换到低电平忆导$G\left( {{\varphi _1}} \right)$ (负电压脉冲的幅值Vm= –2 V)

    Figure 5.  (a) Switching from the state $ {\varphi _2} $ to the state $ {\varphi _1} $ (a negative voltage pulse with amplitude Vm= –2 V); (b) switching from the high-level memductance $G\left( {{\varphi _2}} \right)$ to the low-level memductance $G\left( {{\varphi _1}} \right)$(a negative voltage pulse with amplitude Vm= –2 V).

    图 6  耦合强度$k$变化时分岔图和李雅普诺夫指数 (a)耦合强度$k$变化时分岔图; (b)耦合强度$k$变化时李雅普诺夫指数

    Figure 6.  Bifurcation diagram and Lyapunov exponents with the coupling strength $k$ changing: (a) Bifurcation diagram with the coupling strength $k$ changing; (b) Lyapunov exponents with the coupling strength $k$ changing.

    图 7  不同耦合强度$k$, 尖峰放电模式的相图及时域波形图

    Figure 7.  Phase diagrams and time domain waveform diagrams of spiking firing modes, with different coupling strengths $k$.

    图 8  不同耦合强度$k$, 簇发放电模式的相图及时域波形图

    Figure 8.  Phase diagrams and domain waveform diagrams of bursting firing modes, with different coupling strengths $k$.

    图 9  初始状态$\varphi \left( 0 \right)$变化时分岔图, $\varphi \left( 0 \right) \in \left[ { - 0.4, 0.4} \right]$

    Figure 9.  Bifurcation diagram with the initial state $\varphi \left( 0 \right)$ changing, $\varphi \left( 0 \right) \in \left[ { - 0.4, 0.4} \right]$.

    图 10  李雅普诺夫指数

    Figure 10.  Lyapunov exponents.

    图 11  0-1测试

    Figure 11.  0-1 test.

    图 12  电路实现 (a) 新型局部有源忆阻器的电路实现; (b) HR神经元的电路实现; (c) FHN神经元的电路实现

    Figure 12.  Circuit implementations: (a) Circuit implementation of the novel locally active memristor; (b) circuit implementation of the HR neuron; (c) circuit implementation of the FHN neuron.

    图 13  电路实现的相图及时域波形图(周期2尖峰放电模式) (a) 相图; (b) 时域波形图

    Figure 13.  Phase diagram and time domain waveform diagram of circuit implementation (period-2 spiking firing mode): (a) Phase diagram; (b) time domain waveform.

    图 14  电路实现的相图及时域波形图(混沌尖峰放电模式) (a)相图; (b)时域波形图

    Figure 14.  Phase diagram and time domain waveform diagram of circuit implementation (chaotic spiking firing mode): (a) Phase diagram; (b) time domain waveform.

    图 15  有限时间同步策略作用下滑模面与同步误差的响应曲线 (a)有限时间滑模面${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b)同步误差${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$

    Figure 15.  Response curves of sliding mode surfaces and synchronization errors when the finite-time synchronization strategy acts: (a) Finite-time sliding mode surfaces ${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b) synchronization errors ${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$.

    图 16  固定时间同步策略作用下滑模面与同步误差的响应曲线 (a) 固定时间滑模面${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b) 同步误差${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$

    Figure 16.  Response curves of sliding mode surfaces and synchronization errors when the fixed-time synchronization strategy acts: (a) Fixed-time sliding mode surfaces ${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b) synchronization errors ${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$.

    图 17   新型预定义时间同步策略作用下滑模面与同步误差的响应曲线 (a)新型预定义时间滑模面${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b)同步误差${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$

    Figure 17.  Response curves of sliding mode surfaces and synchronization errors when the novel predefined-time synchronization strategy acts: (a) Novel predefined-time sliding mode surfaces ${s_1}$, ${s_2}$, ${s_3}$, ${s_4}$, ${s_5}$; (b) synchronization errors ${e_1}$, ${e_2}$, ${e_3}$, ${e_4}$, ${e_5}$

    图 18  新型预定义时间同步策略作用下相图 (a) $ \left( {{x_1}, {y_1}} \right) $; (b) $ \left( {{x_2}, {y_2}} \right) $; (c) $ \left( {{x_3}, {y_3}} \right) $; (d) $ \left( {{x_4}, {y_4}} \right) $; (e) $ \left( {{x_5}, {y_5}} \right) $

    Figure 18.  Phase diagrams when the novel predefined-time synchronization strategy acts: (a) $ \left( {{x_1}, {y_1}} \right) $; (b) $ \left( {{x_2}, {y_2}} \right) $; (c) $ \left( {{x_3}, {y_3}} \right) $; (d) $ \left( {{x_4}, {y_4}} \right) $; (e) $ \left( {{x_5}, {y_5}} \right) $.

    图 19  传统预定义时间同步策略作用下滑模面与同步误差的响应曲线 (a)传统预定义时间滑模面${s_1}, {s_2}, {s_3}, {s_4}, {s_5}$; (b)同步误差${e_1}, {e_2}, {e_3}, {e_4}, {e_5}$

    Figure 19.  Response curves of sliding mode surfaces and synchronization errors when the traditional predefined-time synchronization strategy acts: (a) Traditional predefined-time sliding mode surfaces ${s_1}, {s_2}, {s_3}, {s_4}, {s_5}$; (b) synchronization errors ${e_1}, {e_2}, {e_3}, {e_4}, {e_5}$.

    图 20  鲁棒性的验证

    Figure 20.  Verification of robustness.

    表 1  放电模式

    Table 1.  Firing modes.

    耦合强度$k$放电模式相图编号时域波形图编号
    0.0070周期1尖峰放电图7(a)图7(b)
    0.0400周期2尖峰放电图7(c)图7(d)
    0.1200周期4尖峰放电图7(e)图7(f)
    0.1691周期5尖峰放电图7(g)图7(h)
    0.1428周期6尖峰放电图7(i)图7(j)
    0.1290周期8尖峰放电图7(k)图7(l)
    0.1800混沌尖峰放电图7(m)图7(n)
    0.4150周期4簇发放电图8(a)图8(b)
    0.3600周期8簇发放电图8(c)图8(d)
    0.4800随机簇发放电图8(e)图8(f)
    DownLoad: CSV

    表 2  新型忆阻耦合异质神经元的电路参数

    Table 2.  Circuit parameters of the novel memristor-coupled heterogeneous neuron.

    电路参数 类型
    $R$, ${R_5}$, ${R_6}$, ${R_8}$,
    ${R_{10}}$, ${R_{14}}$, ${R_{16}}$
    电阻/kΩ $200$
    ${R_1}$ 电阻/kΩ $ 2700 $
    ${R_2}$ 电阻/kΩ $ 33.333 $
    ${R_3}$, ${R_9}$, ${R_{15}}$ 电阻/kΩ $ 40 $
    ${R_4}$ 电阻/kΩ $ 100 $
    ${R_7}$ 电阻/kΩ $66.667$
    ${R_{11}}$ 电阻/kΩ $ 3000 $
    ${R_{12}}$, ${R_{13}}$ 电阻/kΩ $ 1000 $
    ${R_k}$ 电阻/kΩ $ {{200} \mathord{\left/ {\vphantom {{200} k}} \right. } k} $
    ${C_0}$ 电容/nF $40$
    ${V_{{\text{HR}}}}$, ${V_{{\text{FHN}}}}$ 直流电压源/V $ 1 $
    DownLoad: CSV
    Baidu
  • [1]

    Pecora L M, Carroll T L 1990 Phys. Rev. Lett. 64 821Google Scholar

    [2]

    Syed Ali M, Stamov G, Stamova I, Ibrahim T F, Dawood A A, Osman Birkea F M 2023 Mathematics 11 4248Google Scholar

    [3]

    Zhang J R, Lu J G, Jin X C, Yang X Y 2023 Neural Networks 167 680Google Scholar

    [4]

    Wu X, Liu S T, Wang H Y, Wang Y 2023 ISA Trans. 136 114Google Scholar

    [5]

    Ping J, Zhu S, Shi M X, Wu S M, Shen M Q, Liu X Y, Wen S P 2023 IEEE Trans. Netw. Sci. Eng. 10 3609Google Scholar

    [6]

    Beyhan S 2024 Chaos Soliton. Fract. 180 114578Google Scholar

    [7]

    Shi P, Li X, Zhang Y Q, Yan J J 2023 IEEE Trans. Circuits Syst. I-Regul. Pap. 70 1381Google Scholar

    [8]

    Chen Q, Li B, Yin W, Jiang X W, Chen X Y 2023 Chaos Soliton. Fract. 171 113440Google Scholar

    [9]

    Zhao N N, Qiao Y H, Miao J, Duan L J 2024 IEEE Trans. Fuzzy Syst. 32 1978Google Scholar

    [10]

    Zhang Y L, Yang L Q, Kou K I, Liu Y 2023 Neural Networks 165 274Google Scholar

    [11]

    Wang S S, Jian J G 2023 Chaos Soliton. Fract. 174 113790Google Scholar

    [12]

    Zhou X H, Cao J D, Wang X 2023 Neural Networks 160 97Google Scholar

    [13]

    Mahemuti R, Abdurahman A 2023 Mathematics 11 1291Google Scholar

    [14]

    Chakraborty A, Veeresha P 2024 Chaos Soliton. Fract. 182 114810Google Scholar

    [15]

    Yu F, Kong X X, Yao W, Zhang J, Cai S, Lin H R, Jin J 2024 Chaos Soliton. Fract. 179 114440Google Scholar

    [16]

    Sun W, Li B W, Wu A L, Guo W L, Wu X Q 2023 IEEE T. Cybern. 53 6277Google Scholar

    [17]

    Ding D, Tang Z, Park J H, Wang Y, Ji Z C 2023 IEEE T. Cybern. 53 887Google Scholar

    [18]

    Surendar R, Muthtamilselvan M, Ahn K 2024 Chaos Soliton. Fract. 181 114659Google Scholar

    [19]

    Saeed N A, Saleh H A, El-Ganaini W A, Awrejcewicz J, Mahmoud H A 2024 Chin. J. Phys. 88 311Google Scholar

    [20]

    Ji X Y, Dong Z K, Han Y F, Lai C S, Zhou G D, Qi D L 2023 IEEE Trans. Consum. Electron. 69 1005Google Scholar

    [21]

    Dong Z K, Ji X Y, Lai C S, Qi D L, Zhou G D, Lai L L 2023 IEEE Consum. Electron. Mag. 12 94Google Scholar

    [22]

    Liu J Y, Xiong F E, Zhou Y, Duan S K, Hu X F 2024 IEEE Trans. Cogn. Dev. Syst. 16 794Google Scholar

    [23]

    Lei Z Y, Yang J C, Qiu H S, Zhang X Z, Liu J Z 2024 Electronics 13 2229Google Scholar

    [24]

    Jin P P, Wang G Y, Liang Y, Iu H H C, Chua L O 2021 IEEE Trans. Circuits Syst. I-Regul. Pap. 68 4419Google Scholar

    [25]

    Kuwahara T, Oshio R, Kimura M, Zhang R Y, Nakashima Y 2024 Neurocomputing 593 127792Google Scholar

    [26]

    Mannan Z I, Adhikari S P, Yang C J, Budhathoki R K, Kim H, Chua L 2019 IEEE Trans. Neural Netw. Learn. Syst. 30 3458Google Scholar

    [27]

    Chua L O 2005 Int. J. Bifurcat. Chaos 15 3435Google Scholar

    [28]

    Chua L O 2014 Semicond. Sci. Technol. 29 104001Google Scholar

    [29]

    Yan S H, Zhang Y Y, Ren Y, Sun X, Cui Y, Li L 2023 Nonlinear Dynam. 111 17547Google Scholar

    [30]

    Huang L L, Wang S T, Lei T F, Huang K Y, Li C B 2024 Int. J. Bifurcat. Chaos 34 2450022Google Scholar

    [31]

    Li C L, Wang X, Du J R, Li Z J 2023 Nonlinear Dynam. 111 21333Google Scholar

    [32]

    Wang M J, Peng J W, He S B, Zhang X, Iu H H C 2023 Fractal Fract. 7 818Google Scholar

    [33]

    Zhang S H, Zhang H L, Lin H R, Wang C 2024 Nonlinear Dynam. 112 12411Google Scholar

    [34]

    Jia J, Wang F, Zeng Z G 2022 Neurocomputing 505 413Google Scholar

    [35]

    Guo Z H, Li Z J, Wang M J, Ma M L 2023 Chin. Phys. B 32 038701Google Scholar

    [36]

    Cao H B, Wang F Q 2021 IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 29 617Google Scholar

    [37]

    Liu W, Wang F Q, Ma X K 2015 Int. J. Numer. Model. 28 335Google Scholar

    [38]

    Xu B, Zou S T, Bai L B, Chen K, Zhao J 2024 Nonlinear Dynam. 112 1395Google Scholar

    [39]

    Chua L O 2018 Appl. Phys. A-Mater. Sci. Process. 124 563Google Scholar

    [40]

    Dong Y J, Wang G Y, Chen G R, Shen Y R, Ying J J 2020 Commun. Nonlinear Sci. Numer. Simul. 84 105203Google Scholar

    [41]

    Lin H R, Wang C H, Deng Q L, Xu C, Deng Z K, Zhou C 2021 Nonlinear Dynam. 106 959Google Scholar

    [42]

    Wei Z C 2011 Phys. Lett. A 376 102Google Scholar

    [43]

    包涵, 包伯成, 林毅, 王将, 武花干 2016 65 180501Google Scholar

    Bao H, Bao B C, Lin Y, Wang J, Wu H G 2016 Acta Phys. Sin. 65 180501Google Scholar

    [44]

    Gottwald G A, Melbourne I 2009 SIAM J. Appl. Dyn. Syst. 8 129Google Scholar

    [45]

    Bhat S P, Bernstein D S 2000 SIAM J. Control Optim. 38 751Google Scholar

    [46]

    Polyakov A 2012 IEEE Trans. Autom. Control 57 2106Google Scholar

    [47]

    Sánchez-Torres J D, Gómez-Gutiérrez D, López E, Loukianov A G 2018 IMA J. Math. Control Inf. 35 i1Google Scholar

    [48]

    Wongvanich N, Roongmuanpha N, Tangsrirat W 2023 IEEE Access 11 88388Google Scholar

    [49]

    Kang X Y, Chai L, Liu H K 2023 Int. J. Control Autom. Syst. 21 1210Google Scholar

    [50]

    Ni J K, Liu C X, Liu K, Liu L 2014 Chin. Phys. B 23 100504Google Scholar

    [51]

    Shirkavand M, Pourgholi M 2018 Chaos Soliton. Fract. 113 135Google Scholar

    [52]

    Han S 2023 J. Mar. Sci. Eng. 11 2191Google Scholar

  • [1] Lai Qiang, Wang Jun. Finite and fixed-time synchronization of memristive chaotic systems based on sliding mode reaching law. Acta Physica Sinica, 2024, 73(18): 180503. doi: 10.7498/aps.73.20241013
    [2] Wang Meng-Jiao, Yang Chen, He Shao-Bo, Li Zhi-Jun. A novel compound exponential locally active memristor coupled Hopfield neural network. Acta Physica Sinica, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888
    [3] Zhang Shi-Qi, Yang Hua-Tong. Quantitative description of uncertainty andentropic uncertainty relation. Acta Physica Sinica, 2023, 72(11): 110303. doi: 10.7498/aps.72.20222443
    [4] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [5] Huang Ying, Gu Chang-Gui, Yang Hui-Jie. Junk-neuron-deletion strategy for hyperparameter optimization of neural networks. Acta Physica Sinica, 2022, 71(16): 160501. doi: 10.7498/aps.71.20220436
    [6] Gu Ya-Na, Liang Yan, Wang Guang-Yi, Xia Chen-Yang. Design of NbOx memristive neuron and its application in spiking neural networks. Acta Physica Sinica, 2022, 71(11): 110501. doi: 10.7498/aps.71.20220141
    [7] Zhu Jia-Xue, Zhang Xu-Meng, Wang Rui, Liu Qi. Flexible memristive spiking neuron for neuromorphic sensing and computing. Acta Physica Sinica, 2022, 71(14): 148503. doi: 10.7498/aps.71.20212323
    [8] Wang Shi-Chang, Lu Zhen-Zhou, Liang Yan, Wang Guang-Yi. Neuromorphic behaviors of N-type locally-active memristor. Acta Physica Sinica, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [9] Ding Da-Wei, Lu Xiao-Qi, Hu Yong-Bing, Yang Zong-Li, Wang Wei, Zhang Hong-Wei. Multistability of fractional-order memristor-coupled heterogeneous neurons and its hardware realization. Acta Physica Sinica, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525
    [10] Bai Jing, Guan Fu-Rong, Tang Guo-Ning. Various effects induced by local synchronization in neural networks. Acta Physica Sinica, 2021, 70(17): 170502. doi: 10.7498/aps.70.20210142
    [11] Yu Wen-Ting, Zhang Juan, Tang Jun. Effects of dynamic synapses, neuronal coupling, and time delay on firing of neuron. Acta Physica Sinica, 2017, 66(20): 200201. doi: 10.7498/aps.66.200201
    [12] Zhang Wei, Zhang He, Chen Yong, Zhang Xiang-Jin, Xu Xiao-Bin. Angle measurement uncertainty statistical distribution of pulsed laser quadrant photodetector. Acta Physica Sinica, 2017, 66(1): 012901. doi: 10.7498/aps.66.012901
    [13] Xiu Chun-Bo, Liu Chang, Guo Fu-Hui, Cheng Yi, Luo Jing. Control strategy and application of hysteretic chaotic neuron and neural network. Acta Physica Sinica, 2015, 64(6): 060504. doi: 10.7498/aps.64.060504
    [14] Wu Xue-Li, Liu Jie, Zhang Jian-Hua, Wang Ying. Synchronizing a class of uncertain and variable time-delay fractional-order hyper-chaotic systems by adaptive sliding robust mode control. Acta Physica Sinica, 2014, 63(16): 160507. doi: 10.7498/aps.63.160507
    [15] Wang Xi, Wang Yu-Hong, Li Xing-Yuan, Miao Miao. Design of the static var compensator adaptive sliding mode controller considering model uncertainty and time-delay. Acta Physica Sinica, 2014, 63(23): 238407. doi: 10.7498/aps.63.238407
    [16] Sun Xiao-Juan, Yang Bai-Hua, Wu Ye, Xiao Jing-Hua. Effects of arrangement of heterogeneous neurons on frequency synchronization of a ring-coupled neuronal network. Acta Physica Sinica, 2014, 63(18): 180507. doi: 10.7498/aps.63.180507
    [17] Wu Wang-Sheng, Tang Guo-Ning. Synchronizations of chaotic neuronal networks under different couplings. Acta Physica Sinica, 2012, 61(7): 070505. doi: 10.7498/aps.61.070505
    [18] He Guo-Guang, Zhu Ping, Chen Hong-Ping, Xie Xiao-Ping. Synchronization in a threshold coupled chaotic neuronal map. Acta Physica Sinica, 2010, 59(8): 5307-5312. doi: 10.7498/aps.59.5307
    [19] Ma Jun, Su Wen-Tao, Gao Jia-Zhen. Optimization of self-adaptive synchronization and parameters estimation in chaotic Hindmarsh-Rose neuron model. Acta Physica Sinica, 2010, 59(3): 1554-1561. doi: 10.7498/aps.59.1554
    [20] Yue Dong, Jun Yoneyama. Adaptive fuzzy synchronization of chaotic systems with uncertainties. Acta Physica Sinica, 2003, 52(2): 292-297. doi: 10.7498/aps.52.292
Metrics
  • Abstract views:  1099
  • PDF Downloads:  51
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2024
  • Accepted Date:  25 July 2024
  • Available Online:  09 August 2024
  • Published Online:  05 September 2024

/

返回文章
返回
Baidu
map