-
针对一类具有更复杂动力学行为的忆阻混沌系统,本文基于新型幂次趋近律设计两种滑模控制协议分别实现了系统的有限时间、固定时间同步。首先对于有限时间同步问题,基于Lyapunov稳定性理论和有限时间稳定性理论,推导了实现全局有限时间同步的充分条件,得到了与系统初始条件有关的稳定时间上限,并证明了系统的稳定性。对于固定时间同步问题,利用固定时间稳定性理论,推导得到不随系统初始值变化的收敛时间上确界。最后,通过设置两组对照实验,比较了两种滑模控制律对系统同步状态的影响,其仿真结果与数值分析相符,从而验证了本文的有效性和可行性。This paper presents two innovative sliding mode control laws that are meticulously designed based on the reaching law convergence principle. These control laws aim to achieve both finite-time and fixed-time synchronization for a specific class of memristive chaotic systems, which are known for their intricate and complex dynamical behaviors. By leveraging these control strategies, we can effectively manage the synchronization process, ensuring rapid convergence. Firstly, for the finite-time synchronization issue, a novel power reaching law is devised. Compared with the conventional reaching law, the prominent advantage of this reaching law is that the chattering of the sliding mode control is reduced to a lesser extent and the speed of reaching the sliding surface is quicker. An upper bound on the stabilization time, which is dependent on the initial conditions of the system, is obtained and the stability of the system is proved. For the fixed time synchronization problem, a new double power reaching law is put forward to minimize the chattering and accelerate the convergence. Then, by utilizing the fixed time stability theory, the upper bound of the convergence time that remains invariant with the initial value of the system is derived. Finally, in order to verify the effectiveness and feasibility of the theoretical derivation in this paper, two sets of control experiments are set up in the numerical simulation part to compare the influence of the two control laws on the system synchronization state. The experimental phenomenon strongly proves the accuracy of the proposed theorem.
-
Keywords:
- Finite-time synchronization /
- fixed-time synchronization /
- new power reaching law /
- memristor chaotic systems
-
[1] An X L, Liu S Y, Xiong L, Zhang J G, Li X Y 2024 Expert Syst. Appl 243 122899
[2] Lai Q, Yang L, Hu G W, Guan Z H, Iu H H C 2024 IEEE Trans. Cybern. 54 4039
[3] Lai Q, Yang L, Chen G R 2024 IEEE Trans. Ind. Electron. 71 7819
[4] Ji X Y, Dong Z K, Han Y F, Lai C S, Qi D L 2023 IEEE Trans. Circuits Syst. Video Technol. 33 7928
[5] Ji X Y, Dong Z K, Han Y F, Lai C S, Zhou G D, Qi D L 2023 IEEE Trans. Consum. Electr. 69 1005
[6] Babanli K M, Kabaoglu R O 2024 Inf. Sci 657 119988
[7] Wang G C, Li X H, Yan S H, Tan L L, Guan W L 2021 Acta Phys. Sin. 70 138 (王国超,李星辉,颜树华,谭立龙,管文良 2021 70 138)
[8] Zheng H, Zhu W, Li X 2024 Chaos Soliton Fract. 180 114496
[9] Wang D L, Shi Z, Wang J S, Wu H Y, Zhang X H, Chang G Q 2024 Acta Phys. Sin. 73 148 (王栋梁,史卓,王井上,吴洪悦,张晓辉,常国庆 2024 73 148)
[10] Lai Q, Chen Z J 2023 Chaos Soliton Fract.176 114118
[11] Zhang X J, Yuan X M, Wang X Y, Zhu J H, Li C W 2022 Acta Autom. Sin. 48 712 (张骁骏, 袁夏明, 王向阳, 朱纪洪, 李春文 2022 自动化学报 48 712)
[12] Mobayen S 2018 ISA T 77 100
[13] Wu C J, Fang L Y, Yang N N 2024 Acta Phys. Sin. 73 114 (吴朝俊,方礼熠,杨宁宁 2024 73 114)
[14] Junejo A K, Xu W, Mu C, Ismail M M, Liu Y 2020 IEEE Trans. Power Electron. 35 12110
[15] Wang Y J, Tu L L, Song S, Li K Y, 2018 Acta Phys. Sin. 67 60 (王宇娟,涂俐兰,宋帅,李宽洋 2018 67 60)
[16] Lai Q, Yang L 2023 Chaos Soliton Fract. 174 113807
[17] Hao Y, Fang Z, Liu H 2024 Inf. Sci 666 120423
[18] Bhat S P, Bernstein D S 2000 SIAM J Control Optim. 38 751
[19] Dong H L, Cao J D, Liu H 2023 Chaos 33 043113
[20] Fu H, Kao Y G 2023 Chaos 33 043136
[21] Polyakov A 2011 IEEE Trans. Autom. Control 57 8
[22] Ullah S, Khan Q, Zaidi M M, Hua L G 2024 Inf. Sci 659 120087
[23] Zheng C C, Hu C, Yu J, Wen S P 2024 Neural Netw. 169 32
[24] Hu X, Wang L, Zhang C K, He Y 2024 IEEE Trans. Fuzzy Syst. 32 2307
[25] Wang L, Dong T, Ge M F 2019 Appl. Math. Comput. 347 293
[26] Fallaha C J, Saad M, Kanaan H Y, Haddad K A 2010 IEEE Trans. Ind. Electron. 58 600
[27] Wang L, Jiang S, Ge M F, Hu C, Hu J H 2021 IEEE Trans. Circuits Syst. I: Regul. Pap. 68 4957
计量
- 文章访问数: 99
- PDF下载量: 2
- 被引次数: 0