Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of self-adaptive synchronization and parameters estimation in chaotic Hindmarsh-Rose neuron model

Ma Jun Su Wen-Tao Gao Jia-Zhen

Citation:

Optimization of self-adaptive synchronization and parameters estimation in chaotic Hindmarsh-Rose neuron model

Ma Jun, Su Wen-Tao, Gao Jia-Zhen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Optimization of self-adaptive synchronization is investigated to estimate a group of five unknown parameters in one certain chaotic neuron model, which is described by the Hindmarsh-Rose. Two controllable gain coefficients are introduced into the Lyapunov function, which is necessary to get the form of parameter observers and controllers for parameter estimation and synchronization, to adjust the transient period for complete synchronization and parameter identification. It is found that the identified results for the minimal parameter (three orders of magnitude less than the maximal parameter) oscillate with time (the estimated results for this parameter is not exact) while the four remaining parameters are estimated very well when one controller and five parameter observers are used to work on the driven system (response system). To the best of our knowledge, it could result from the great difference of five target parameters (values). As a result, this problem could be solved when two controllers and five parameter observers are used to change the driven system and all the unknown parameters are identified with high precision. Furthermore, longer transient period for parameter estimation and complete synchronization is required when too strong gain coefficients are used, whils parameters can not be estimated exactly if too weak gain coefficients are used. Therefore, appropriate gain coefficients are critical to achieve the shortest transient period for parameter identification and complete synchronization of chaotic systems, and the optimization of gain coefficients depends on the model being studied. Furthermore, it is confirmed by our numerical results that this scheme is effective and reliable to estimate the parameters even if some parameters jump suddenly.
    [1]

    [1]Boccaletti S, Grebogi C, Lai Y C, Mancini H, Maza D 2000 Phys. Rep. 329 103

    [2]

    [2]Boccaletti S, Kurths J, Osipov G, Valladares D L, Zhou C S 2002 Phys. Rep. 366 1

    [3]

    [3]Chen S H, Zhao L M , Liu Jie 2002 Chin. Phys. 11 543

    [4]

    [4]Yu S M ,Ma Z G ,Qiu S S, Peng S G, Lin Q H 2004 Chin. Phys.13 317

    [5]

    [5]Wang Q Yun, Lu Q S , Wang H X 2005 Chin. Phys. 14 2189

    [6]

    [6]Zou Y L, Zhu J,Chen G R 2005 Chin. Phys . 14 697

    [7]

    [7]Lü L , Zhang Q L,Guo Z A 2008 Chin. Phys. B 17 498

    [8]

    [8]Wei D Q , Luo X S 2007 Chin. Phys. 16 3244

    [9]

    [9]Wei D Q , Luo X S 2008 Chin. Phys. B 17 92

    [10]

    ]Wang F Q ,Liu C X 2007 Chin. Phys. 16 946

    [11]

    ]Ma J, Jin W Y , Li Y L 2008 Chaos,Solitons & Fractals 36 494

    [12]

    ]Wang Q Y, Jin W Y, Xia Y F 2008 Chin. Phys. Lett. 25 3582

    [13]

    ]Li Z, Han C Z 2002 Chin. Phys. 11 9

    [14]

    ]Xiao Y Z,Xu W 2007 Chin. Phys. 16 1597

    [15]

    ]Lü L,Guo Z A ,Zhang C 2007 Chin. Phys. 16 1603

    [16]

    ]Xiao Y Z, Xu W, Li X C, Tang S F 2008 Chin. Phys. B 17 80

    [17]

    ]Liu Z R, Luo J G 2006 Chin. Phys. Lett. 23 1118

    [18]

    ]Wang H X, Lu Q S, Wang Q Y 2005 Chin. Phys. Lett. 22 2173

    [19]

    ]Yang X L, Xu W 2008 Chin. Phys. B 17 2004

    [20]

    ]Li X W, Zheng Z G 2007 Commun. Theor. Phys. 47 265

    [21]

    ]Shi X , Lu Q S 2005 Chin. Phys. Lett. 22 547

    [22]

    ]Zhan M, Hu G ,Wang X G 2000 Chin. Phys. Lett. 17 332

    [23]

    ]Ho M C, Hung Y C ,Chou C H 2002 Phys. Lett. A 296 43

    [24]

    ]Shuai J W, Durand D M 1999 Phys. Lett. A 264 289

    [25]

    ]Vincent U E, Njah A N , Solarin A R T 2006 Physica A 360 186

    [26]

    ]Li G H 2007 Chin. Phys. 16 2608

    [27]

    ]Li D , Zheng Z G 2008 Chin. Phys. B 17 4009

    [28]

    ]Yang J Z , Hu G 2007 Phys. Lett. A 361 332

    [29]

    ]Yang J Z, Zhang M 2008 Commun. Theor. Phys. 49 391

    [30]

    ]Min L Q, Chen G R, Zhang X D, Zhang X H, Yang M 2004 Commun. Theor. Phys. 41 632

    [31]

    ]Jing J Y, Min L Q 2009 Chin. Phys. Lett. 26 028702

    [32]

    ]Chen Y H, Wu Z Y, Yang J Z 2007 Chin. Phys. Lett. 24 46

    [33]

    ]Li C D , Liao X F 2004 Phys. Lett. A 329 301

    [34]

    ]Shahverdiev E M , Shore K A Phys. Lett. A 292 320

    [35]

    ]Zhang H G, Ma T D,Yu W , Fu J 2008 Chin. Phys. B 17 3616

    [36]

    ]Gao J, Zheng Z G, He D Hi, Zhang T X 2003 Chin. Phys. Lett. 20 999

    [37]

    ]Mu J, Tao C , Du G H 2003 Chin. Phys. 12 381

    [38]

    ]Wu L , Zhu S Q 2003 Chin. Phys. 12 300

    [39]

    ]Lu J G , Xi Y G 2005 Chin. Phys. 14 274

    [40]

    ]Xu J F, Min L Q , Chen G R 2004 Chin. Phys. Lett. 21 1445

    [41]

    ]Shi X , Lu Q S 2005 Chin. Phys.14 77

    [42]

    ]Hindmarsh J L , Rose R M 1982 Nature 276 162

    [43]

    ]Hindmarsh J L , Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [44]

    ]Gao B J ,Lu J A 2007 Chin. Phys.16 666

    [45]

    ]Cai G L, Zheng S , Tian L X 2008 Chin. Phys. B 17 2412

    [46]

    ]Huang J 2008 Phys. Lett. A 372 4799

    [47]

    ]Wang Y W,Wen C Y, Yang M , Xiao J W 2008 Phys. Lett. A 372 2409

    [48]

    ]Zhang G, Liu Z R , Zhang J B 2008 Phys. Lett. A 372 447

    [49]

    ]Elabbasy E M, El-Dessoky M M 2006 Phys. Lett. A 349 187

    [50]

    ]Li L, Li J F, Liu Y P, Ma J, 2008 Acta Phys. Sin. 57 1404(in Chinese)[李农、李建芬、刘宇平、马健 2008 57 1404]

    [51]

    ]Li L, Li J F, Cai L , Zhang B, 2008 Acta Phys. Sin. 57 7500(in Chinese)[李农、李建芬、 蔡理、张斌 2008 57 7500]

  • [1]

    [1]Boccaletti S, Grebogi C, Lai Y C, Mancini H, Maza D 2000 Phys. Rep. 329 103

    [2]

    [2]Boccaletti S, Kurths J, Osipov G, Valladares D L, Zhou C S 2002 Phys. Rep. 366 1

    [3]

    [3]Chen S H, Zhao L M , Liu Jie 2002 Chin. Phys. 11 543

    [4]

    [4]Yu S M ,Ma Z G ,Qiu S S, Peng S G, Lin Q H 2004 Chin. Phys.13 317

    [5]

    [5]Wang Q Yun, Lu Q S , Wang H X 2005 Chin. Phys. 14 2189

    [6]

    [6]Zou Y L, Zhu J,Chen G R 2005 Chin. Phys . 14 697

    [7]

    [7]Lü L , Zhang Q L,Guo Z A 2008 Chin. Phys. B 17 498

    [8]

    [8]Wei D Q , Luo X S 2007 Chin. Phys. 16 3244

    [9]

    [9]Wei D Q , Luo X S 2008 Chin. Phys. B 17 92

    [10]

    ]Wang F Q ,Liu C X 2007 Chin. Phys. 16 946

    [11]

    ]Ma J, Jin W Y , Li Y L 2008 Chaos,Solitons & Fractals 36 494

    [12]

    ]Wang Q Y, Jin W Y, Xia Y F 2008 Chin. Phys. Lett. 25 3582

    [13]

    ]Li Z, Han C Z 2002 Chin. Phys. 11 9

    [14]

    ]Xiao Y Z,Xu W 2007 Chin. Phys. 16 1597

    [15]

    ]Lü L,Guo Z A ,Zhang C 2007 Chin. Phys. 16 1603

    [16]

    ]Xiao Y Z, Xu W, Li X C, Tang S F 2008 Chin. Phys. B 17 80

    [17]

    ]Liu Z R, Luo J G 2006 Chin. Phys. Lett. 23 1118

    [18]

    ]Wang H X, Lu Q S, Wang Q Y 2005 Chin. Phys. Lett. 22 2173

    [19]

    ]Yang X L, Xu W 2008 Chin. Phys. B 17 2004

    [20]

    ]Li X W, Zheng Z G 2007 Commun. Theor. Phys. 47 265

    [21]

    ]Shi X , Lu Q S 2005 Chin. Phys. Lett. 22 547

    [22]

    ]Zhan M, Hu G ,Wang X G 2000 Chin. Phys. Lett. 17 332

    [23]

    ]Ho M C, Hung Y C ,Chou C H 2002 Phys. Lett. A 296 43

    [24]

    ]Shuai J W, Durand D M 1999 Phys. Lett. A 264 289

    [25]

    ]Vincent U E, Njah A N , Solarin A R T 2006 Physica A 360 186

    [26]

    ]Li G H 2007 Chin. Phys. 16 2608

    [27]

    ]Li D , Zheng Z G 2008 Chin. Phys. B 17 4009

    [28]

    ]Yang J Z , Hu G 2007 Phys. Lett. A 361 332

    [29]

    ]Yang J Z, Zhang M 2008 Commun. Theor. Phys. 49 391

    [30]

    ]Min L Q, Chen G R, Zhang X D, Zhang X H, Yang M 2004 Commun. Theor. Phys. 41 632

    [31]

    ]Jing J Y, Min L Q 2009 Chin. Phys. Lett. 26 028702

    [32]

    ]Chen Y H, Wu Z Y, Yang J Z 2007 Chin. Phys. Lett. 24 46

    [33]

    ]Li C D , Liao X F 2004 Phys. Lett. A 329 301

    [34]

    ]Shahverdiev E M , Shore K A Phys. Lett. A 292 320

    [35]

    ]Zhang H G, Ma T D,Yu W , Fu J 2008 Chin. Phys. B 17 3616

    [36]

    ]Gao J, Zheng Z G, He D Hi, Zhang T X 2003 Chin. Phys. Lett. 20 999

    [37]

    ]Mu J, Tao C , Du G H 2003 Chin. Phys. 12 381

    [38]

    ]Wu L , Zhu S Q 2003 Chin. Phys. 12 300

    [39]

    ]Lu J G , Xi Y G 2005 Chin. Phys. 14 274

    [40]

    ]Xu J F, Min L Q , Chen G R 2004 Chin. Phys. Lett. 21 1445

    [41]

    ]Shi X , Lu Q S 2005 Chin. Phys.14 77

    [42]

    ]Hindmarsh J L , Rose R M 1982 Nature 276 162

    [43]

    ]Hindmarsh J L , Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [44]

    ]Gao B J ,Lu J A 2007 Chin. Phys.16 666

    [45]

    ]Cai G L, Zheng S , Tian L X 2008 Chin. Phys. B 17 2412

    [46]

    ]Huang J 2008 Phys. Lett. A 372 4799

    [47]

    ]Wang Y W,Wen C Y, Yang M , Xiao J W 2008 Phys. Lett. A 372 2409

    [48]

    ]Zhang G, Liu Z R , Zhang J B 2008 Phys. Lett. A 372 447

    [49]

    ]Elabbasy E M, El-Dessoky M M 2006 Phys. Lett. A 349 187

    [50]

    ]Li L, Li J F, Liu Y P, Ma J, 2008 Acta Phys. Sin. 57 1404(in Chinese)[李农、李建芬、刘宇平、马健 2008 57 1404]

    [51]

    ]Li L, Li J F, Cai L , Zhang B, 2008 Acta Phys. Sin. 57 7500(in Chinese)[李农、李建芬、 蔡理、张斌 2008 57 7500]

  • [1] Pang Hui, Zhang Xu. An interconnected state observer for lithium-ion battery based on reduced electrochemical model. Acta Physica Sinica, 2018, 67(22): 228201. doi: 10.7498/aps.67.20181429
    [2] Pang Hui. An extended single particle model-based parameter identification scheme for lithium-ion cells. Acta Physica Sinica, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [3] Wang Peng, Li Qian-Yun, Huang Zhi-Jing, Tang Guo-Ning. Spontaneous formation of ordered waves in chaotic neuronal network with excitory-inhibitory connections. Acta Physica Sinica, 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [4] Zhu Da-Wei, Tu Li-Lan. Adaptive synchronization and parameter identification for Lorenz chaotic system with stochastic perturbations. Acta Physica Sinica, 2013, 62(5): 050508. doi: 10.7498/aps.62.050508
    [5] Li Dong, Deng Liang-Ming, Du Yong-Xia, Yang Yuan-Yuan. Synchronization for fractional order hyperchaotic Chen system and fractional order hyperchaotic Rssler system with different structure. Acta Physica Sinica, 2012, 61(5): 050502. doi: 10.7498/aps.61.050502
    [6] Ma Tie-Dong, Jiang Wei-Bo, Fu Jie, Chai Yi, Chen Li-Ping, Xue Fang-Zheng. Adaptive synchronization of a class of fractional-order chaotic systems. Acta Physica Sinica, 2012, 61(16): 160506. doi: 10.7498/aps.61.160506
    [7] Cao He-Fei, Zhang Ruo-Xun. Parameter modulation digital communication and its circuit implementation using fractional-order chaotic system via a single driving variable. Acta Physica Sinica, 2012, 61(2): 020508. doi: 10.7498/aps.61.020508
    [8] Zhang Ruo-Xun, Cao He-Fei. Adaptive synchronization of fractional-order chaotic system via sliding mode control. Acta Physica Sinica, 2011, 60(5): 050510. doi: 10.7498/aps.60.050510
    [9] Yu Hong-Jie, Tong Wei-Jun. Chaotic control of Hindmarsh-Rose neuron by delayed self-feedback. Acta Physica Sinica, 2009, 58(5): 2977-2982. doi: 10.7498/aps.58.2977
    [10] Luo Qun, Gao Ya, Qi Ya-Nan, Wu Tong, Xu Huan, Li Li-Xiang, Yang Yi-Xian. Model reference adaptive synchronization in integration complex dynamical networks. Acta Physica Sinica, 2009, 58(10): 6809-6817. doi: 10.7498/aps.58.6809
    [11] Zhang Ruo-Xun, Yang Yang, Yang Shi-Ping. Adaptive synchronization of the fractional-order unified chaotic system. Acta Physica Sinica, 2009, 58(9): 6039-6044. doi: 10.7498/aps.58.6039
    [12] Yan Hui, Jiang Hong-Yuan, Liu Wen-Jian, Ulannov A. M.. Identification of parameters for metal rubber isolator with hysteretic nonlinearity characteristics. Acta Physica Sinica, 2009, 58(8): 5238-5243. doi: 10.7498/aps.58.5238
    [13] Luo Qun, Wu Wei, Li Li-Xiang, Yang Yi-Xian, Peng Hai-Peng. Adaptive synchronization research on the uncertain complex networks with time-delay. Acta Physica Sinica, 2008, 57(3): 1529-1534. doi: 10.7498/aps.57.1529
    [14] Gao Yang, Li Li-Xiang, Peng Hai-Peng, Yang Yi-Xian, Zhang Xiao-Hong. Adaptive synchronization in united complex dynamical network with multi-links. Acta Physica Sinica, 2008, 57(4): 2081-2091. doi: 10.7498/aps.57.2081
    [15] Wang Xing-Yuan, Zhao Qun. Adaptive projective synchronization and parameter identification of a class of delayed chaotic neural networks. Acta Physica Sinica, 2008, 57(5): 2812-2818. doi: 10.7498/aps.57.2812
    [16] Zhang Ruo-Xun, Tian Gang, Li Ping, Yang Shi-Ping. Adaptive synchronization of a class of chaotic systems with uncertain parameters. Acta Physica Sinica, 2008, 57(4): 2073-2080. doi: 10.7498/aps.57.2073
    [17] Lü Ling, Guo Zhi-An, Li Yan, Xia Xiao-Lan. Parameter identification and backstepping design of synchronization controller for uncertain chaotic system. Acta Physica Sinica, 2007, 56(1): 95-100. doi: 10.7498/aps.56.95
    [18] Cai Guo-Liang, Huang Juan-Juan. Synchronization for hyperchaotic Chen system and hyperchaotic R?ssler system with different structure. Acta Physica Sinica, 2006, 55(8): 3997-4004. doi: 10.7498/aps.55.3997
    [19] Wang Xing-Yuan, Wu Xiang-Jun. Parameter identification and adaptive synchronization of uncertain Chen system. Acta Physica Sinica, 2006, 55(2): 605-609. doi: 10.7498/aps.55.605
    [20] Wu Ying, Xu Jian-Xue, He Dai-Hai, Jin Wu-Yin. Study on nonlinear characteristics of two synchronizing uncoupled Hindmarsh-Rose neurons. Acta Physica Sinica, 2005, 54(7): 3457-3464. doi: 10.7498/aps.54.3457
Metrics
  • Abstract views:  8487
  • PDF Downloads:  1055
  • Cited By: 0
Publishing process
  • Received Date:  11 June 2009
  • Accepted Date:  29 June 2009
  • Published Online:  15 March 2010

/

返回文章
返回
Baidu
map