Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of dynamic synapses, neuronal coupling, and time delay on firing of neuron

Yu Wen-Ting Zhang Juan Tang Jun

Citation:

Effects of dynamic synapses, neuronal coupling, and time delay on firing of neuron

Yu Wen-Ting, Zhang Juan, Tang Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Neuronal firing plays a key role in the neuronal information transmission, and different neuronal firing patterns are reported, such as spiking, bursting. A number of neuron models are introduced to reproduce the firing patterns of single neuron or neuronal network. The key factors determining the firing pattern gain more and more attention in the study of neuron system, such as noise, network topology. Noise is able to induce sub-or super-threshold coherent neuronal firing easily, and a number of coherence resonances are reported in the noise induced firing. The network topology determines the synchronization of the firing patterns of the neuronal network, and the change of network topology may induce fruitful synchronization transitions. It is well known that synapses exhibit a high variability with a diverse origin during information transmission, such as the stochastic release of neurotransmitters, variations in chemical concentration through synapses, and spatial heterogeneity of synaptic response over dendrite tree. The collective effect of all of these factors might result in the notion of dynamic synapses. In reality, the neuronal network often involves time delay due to the ?nite signal propagation time in biological networks. Recently, neuronal networks with time delay have received considerable attention. Delay-sustained neuronal firing patterns may be relevant to neuronal networks for establishing a concept of collective information processing in the presence of delayed information transmission. According to the above-mentioned motivations, the firing dynamics of the single postsynapic neuron is investigated based on a simple postsynaptic neuron model by using numerical simulation and Fourier transform analysis. In this model, the postsynapic neuron receives dynamic synaptic currents from a population of presynaptic neurons. It is found that the firing rate resonance between the pre-and postsynaptic neuron determines the firing of the postsynaptic neuron. Stimulus currents in specific frequency range are easy to stimulate postsynaptic neuron firing. The random currents released from dynamic synapses determine the postsynaptic firing rate. Then the single postsynaptic neuron is extended to a neuronal network, in which 100 neurons connect to its 4 nearest neighbors regularly and receive delayed synaptic currents from connected neurons. All the neurons in the network receive the same dynamic synaptic currents from the presynaptic neurons. The results show that the synaptic coupling in the network is able to promote the neuron firing in the network, and time delay in the synaptic coupling could reinforce the promotion, but the mode of the promotion is not changed.
      Corresponding author: Tang Jun, tjuns1979@126.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS080(TJ)).
    [1]

    Hartmann G, Hauske G, Eckmiller R 1990 Parallel Processing in Neural Systems and Computers (Amsterdam:Computing and Computers)

    [2]

    Vanrullen R, Guyonneau R, Thorpe S J 2005 Trends Neurosci. 28 1

    [3]

    Pankratova E V, Polovinkin A V, Mosekilde E 2005 Eur. Phys. J. B 45 391

    [4]

    Levin J E, Miller J P 1996 Nature 380 165

    [5]

    Tang J, Liu T B, Ma J, Luo J M, Yang X Q 2016 Commun. Nonlinear Sci. Numer. Simulat. 32 262

    [6]

    Duan W L, Zeng C 2017 Appl. Math. Comput. 292 400

    [7]

    Yu W T, Tang J, Luo J M 2015 Acta Phys. Sin. 64 068702 (in Chinese)[于文婷, 唐军, 罗进明2015 64 068702]

    [8]

    Yu W T, Tang J, Ma J, Luo J M, Yang X Q 2015 Eur. Biophys. J. 44 677

    [9]

    Zeng J, Zeng C, Xie Q, Guan L, Dong X, Yang F 2016 Physica A 462 1273

    [10]

    Johnson J B 1928 Phys. Rev. 32 97

    [11]

    Gu H, Zhao Z 2015 Plos One 10 e0138593

    [12]

    Qian Y 2014 Plos One 9 e96415

    [13]

    Guo D, Wang Q, Perc M 2012 Phys. Rev. E 85 878

    [14]

    Liu S, Wang Q, Fan D 2016 Front. Comput. Neurosc. 10 81

    [15]

    Mainen Z F, Sejnowski T J 1995 Science 268 1503

    [16]

    Jun M A, Tang J 2015 Sci. China:Technol. Sc. 58 2038

    [17]

    Chialvo D R, Longtin A, Mautllergerking J 1997 Phys. Rev. E 55 1798

    [18]

    Gammaitoni L, Hnggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 254

    [19]

    Guo D, Li C 2012 J. Theor. Biol. 308 105

    [20]

    Xiao W W, Gu H G, Liu M R 2016 Sci. China:Technol. Sci. 59 1

    [21]

    Liu F, Yu Y, Wang W 2001 Phys. Rev. E 63 051912

    [22]

    Sakumura Y, Aihara K 2002 Neural Proc. Lett. 16 235

    [23]

    Tang J, Ma J, Yi M, Xia H, Yang X Q 2011 Phys. Rev. E 83 046207

    [24]

    Yu W T, Tang J, Ma J, Yang X Q 2016 Europhys. Lett. 114 50006

    [25]

    Song X L, Wang C N, Ma J, Tang J 2015 Sci. China:Technol. Sci. 58 1

    [26]

    Markram H, Wang Y, Tsodyks M 1998 Proc. Natl. Acad. Sci. USA 95 5323

    [27]

    Braitenberg V, Schz A 1991 Anatomy of the Cortex:Statistics and Geometry (Berlin:Springer-Verlag)

    [28]

    Torres J J, Kappen J H 2013 Front. Comput. Neurosci. 7 30

    [29]

    Abbott L F, Varela J A, Sen K, Nelson S B 1997 Science 275 221

    [30]

    Torres J J, Pantic L, Kappen H J 2002 Phys. Rev. E 66 061910

    [31]

    Mishra J, Fellous J M, Sejnowski T J 2006 Neural Networks 19 1329

    [32]

    Fan D, Wang Z, Wang Q 2015 Commun. Nonlinear Sci. Numer. Simulat. 36 219

    [33]

    Uzuntarla M, Ozer M, Ileri U, Calim A, Torres J J 2015 Phys. Rev. E 92 062710

    [34]

    Qian Y, Zhao Y, Liu F, Huang X, Zhang Z, Mi Y 2013 Commun. Nonlinear. Sci. 18 3509

    [35]

    Qian Y, Liao X, Huang X, Mi Y, Zhang L, Hu G 2010 Phys. Rev. E 82 026107

    [36]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [37]

    Tsodyks M V, Pawelzik K, Markram H 1998 Neural Comput. 10 821

    [38]

    Fitzpatrick J S, Akopian G, Walsh J P 2001 J. Neurophysiol. 85 2088

    [39]

    Tecuapetla F, Carrillo-Reid L, Bargas J, Galarraga E 2007 Proc. Natl. Acad. Sci. USA 104 10258

    [40]

    Ma Y, Hu H, Agmon A 2012 J. Neurosci. 32 983

    [41]

    Barroso-Flores J, Herrera-Valdez M A, Lopez-Huerta V G, Galarraga E 2015 J. Bargas Neural Plast. 2015 573543

    [42]

    Tsodyks M, Uziel A, Markram H 2000 J. Neurosci. 20 RC50

    [43]

    Tsodyks M V, Markram H 1997 Proc. Natl. Acad. Sci. USA 94 719

  • [1]

    Hartmann G, Hauske G, Eckmiller R 1990 Parallel Processing in Neural Systems and Computers (Amsterdam:Computing and Computers)

    [2]

    Vanrullen R, Guyonneau R, Thorpe S J 2005 Trends Neurosci. 28 1

    [3]

    Pankratova E V, Polovinkin A V, Mosekilde E 2005 Eur. Phys. J. B 45 391

    [4]

    Levin J E, Miller J P 1996 Nature 380 165

    [5]

    Tang J, Liu T B, Ma J, Luo J M, Yang X Q 2016 Commun. Nonlinear Sci. Numer. Simulat. 32 262

    [6]

    Duan W L, Zeng C 2017 Appl. Math. Comput. 292 400

    [7]

    Yu W T, Tang J, Luo J M 2015 Acta Phys. Sin. 64 068702 (in Chinese)[于文婷, 唐军, 罗进明2015 64 068702]

    [8]

    Yu W T, Tang J, Ma J, Luo J M, Yang X Q 2015 Eur. Biophys. J. 44 677

    [9]

    Zeng J, Zeng C, Xie Q, Guan L, Dong X, Yang F 2016 Physica A 462 1273

    [10]

    Johnson J B 1928 Phys. Rev. 32 97

    [11]

    Gu H, Zhao Z 2015 Plos One 10 e0138593

    [12]

    Qian Y 2014 Plos One 9 e96415

    [13]

    Guo D, Wang Q, Perc M 2012 Phys. Rev. E 85 878

    [14]

    Liu S, Wang Q, Fan D 2016 Front. Comput. Neurosc. 10 81

    [15]

    Mainen Z F, Sejnowski T J 1995 Science 268 1503

    [16]

    Jun M A, Tang J 2015 Sci. China:Technol. Sc. 58 2038

    [17]

    Chialvo D R, Longtin A, Mautllergerking J 1997 Phys. Rev. E 55 1798

    [18]

    Gammaitoni L, Hnggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 254

    [19]

    Guo D, Li C 2012 J. Theor. Biol. 308 105

    [20]

    Xiao W W, Gu H G, Liu M R 2016 Sci. China:Technol. Sci. 59 1

    [21]

    Liu F, Yu Y, Wang W 2001 Phys. Rev. E 63 051912

    [22]

    Sakumura Y, Aihara K 2002 Neural Proc. Lett. 16 235

    [23]

    Tang J, Ma J, Yi M, Xia H, Yang X Q 2011 Phys. Rev. E 83 046207

    [24]

    Yu W T, Tang J, Ma J, Yang X Q 2016 Europhys. Lett. 114 50006

    [25]

    Song X L, Wang C N, Ma J, Tang J 2015 Sci. China:Technol. Sci. 58 1

    [26]

    Markram H, Wang Y, Tsodyks M 1998 Proc. Natl. Acad. Sci. USA 95 5323

    [27]

    Braitenberg V, Schz A 1991 Anatomy of the Cortex:Statistics and Geometry (Berlin:Springer-Verlag)

    [28]

    Torres J J, Kappen J H 2013 Front. Comput. Neurosci. 7 30

    [29]

    Abbott L F, Varela J A, Sen K, Nelson S B 1997 Science 275 221

    [30]

    Torres J J, Pantic L, Kappen H J 2002 Phys. Rev. E 66 061910

    [31]

    Mishra J, Fellous J M, Sejnowski T J 2006 Neural Networks 19 1329

    [32]

    Fan D, Wang Z, Wang Q 2015 Commun. Nonlinear Sci. Numer. Simulat. 36 219

    [33]

    Uzuntarla M, Ozer M, Ileri U, Calim A, Torres J J 2015 Phys. Rev. E 92 062710

    [34]

    Qian Y, Zhao Y, Liu F, Huang X, Zhang Z, Mi Y 2013 Commun. Nonlinear. Sci. 18 3509

    [35]

    Qian Y, Liao X, Huang X, Mi Y, Zhang L, Hu G 2010 Phys. Rev. E 82 026107

    [36]

    Hodgkin A L, Huxley A F 1952 J. Physiol. 117 500

    [37]

    Tsodyks M V, Pawelzik K, Markram H 1998 Neural Comput. 10 821

    [38]

    Fitzpatrick J S, Akopian G, Walsh J P 2001 J. Neurophysiol. 85 2088

    [39]

    Tecuapetla F, Carrillo-Reid L, Bargas J, Galarraga E 2007 Proc. Natl. Acad. Sci. USA 104 10258

    [40]

    Ma Y, Hu H, Agmon A 2012 J. Neurosci. 32 983

    [41]

    Barroso-Flores J, Herrera-Valdez M A, Lopez-Huerta V G, Galarraga E 2015 J. Bargas Neural Plast. 2015 573543

    [42]

    Tsodyks M, Uziel A, Markram H 2000 J. Neurosci. 20 RC50

    [43]

    Tsodyks M V, Markram H 1997 Proc. Natl. Acad. Sci. USA 94 719

  • [1] Wang Zi-Shuo, Liu Lei, Liu Chen-Bo, Liu Ke, Zhong Zhi, Shan Ming-Guang. Fast phase unwrapping using digital differentiation-integration method. Acta Physica Sinica, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [2] Ma Shao-Qing, Gong Shi-Xiang, Zhang Wei, Lu Cheng-Biao, Li Xiao-Li, Li Ying-Wei. Neuronal growth and development promoted by low-intensity roadband terahertz radiation. Acta Physica Sinica, 2022, 71(20): 208701. doi: 10.7498/aps.71.20220636
    [3] Wang Yan-Hong, Wang Lei, Wu Jing-Zhi. Nanoscale electromagnetic field interaction generated by microtubule vibration in neurons. Acta Physica Sinica, 2021, 70(15): 158703. doi: 10.7498/aps.70.20210421
    [4] Yang Jun, Wu Hao, Luo Kun-Hao, Guo Jin-Chuan, Zong Fang-Ke. Suppression of artifacts in X-ray phase-contrast images retrieved by Fourier transform. Acta Physica Sinica, 2021, 70(10): 104101. doi: 10.7498/aps.70.20201781
    [5] Zhang Xiu-Fang, Ma Jun, Xu Ying, Ren Guo-Dong. Synchronization between FitzHugh-Nagumo neurons coupled with phototube. Acta Physica Sinica, 2021, 70(9): 090502. doi: 10.7498/aps.70.20201953
    [6] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Peng Zhi-Min. Wavelength-scanned cavity ring down spectroscopy based on Fourier transform. Acta Physica Sinica, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [7] Yu Hui, Zhang Rui, Li Ke-Wu, Xue Rui, Wang Zhi-Bin. Principles and simulation of spectropolarimetirc imaging technique based on static dual intensity-modulated Fourier transform. Acta Physica Sinica, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [8] Yu Wen-Ting, Tang Jun, Luo Jin-Ming. Influence of time delay on the memory in a gene regulatory circuit. Acta Physica Sinica, 2015, 64(6): 068702. doi: 10.7498/aps.64.068702
    [9] Xiu Chun-Bo, Liu Chang, Guo Fu-Hui, Cheng Yi, Luo Jing. Control strategy and application of hysteretic chaotic neuron and neural network. Acta Physica Sinica, 2015, 64(6): 060504. doi: 10.7498/aps.64.060504
    [10] Qiao Cheng-Gong, Li Wei-Heng, Tang Guo-Ning. Study on the effect of delayed recovery of extracellular potassium ion concentration on spiral wave. Acta Physica Sinica, 2014, 63(23): 238201. doi: 10.7498/aps.63.238201
    [11] Wang Fu-Xia, Xie Yong. Synchronization of "Hopf/homoclinic" bursting with "SubHopf/homoclinic" bursting. Acta Physica Sinica, 2013, 62(2): 020509. doi: 10.7498/aps.62.020509
    [12] Wang Xing-Yuan, Ren Xiao-Li, Zhang Yong-Lei. Full-order and reduced-order optimal synchronization of neurons model with unknown parameters. Acta Physica Sinica, 2012, 61(6): 060508. doi: 10.7498/aps.61.060508
    [13] Li Chun-Guang, Chen Jun. Circuit design of tabu learning neuron models and their dynamic behavior. Acta Physica Sinica, 2011, 60(2): 020502. doi: 10.7498/aps.60.020502
    [14] Xiangli Bin, Yuan Yan, Lü Qun-Bo. Spectral transfer function of the Fourier transform spectral imager. Acta Physica Sinica, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [15] Wang Hui-Qiao, Yu Lian-Chun, Chen Yong. Effects of channel noise on metabolic energy cost of action potentials. Acta Physica Sinica, 2009, 58(7): 5070-5074. doi: 10.7498/aps.58.5070
    [16] Liu Bin, Jin Wei-Qi, Dong Li-Quan. The diffraction effect in a thermal imaging system with a front wire grid. Acta Physica Sinica, 2008, 57(9): 5578-5583. doi: 10.7498/aps.57.5578
    [17] Zhao Bao-Yin, Lü Bai-Da. A new synthesis method for synthesizing on-axis flat-topped beams by using a defocusing telescope system. Acta Physica Sinica, 2008, 57(5): 2919-2924. doi: 10.7498/aps.57.2919
    [18] Qiao Xiao-Yan, Li Gang, Dong You-Er, He Bing-Jun. Neuron excitability changes induced by low-power laser irradiation. Acta Physica Sinica, 2008, 57(2): 1259-1265. doi: 10.7498/aps.57.1259
    [19] Qiao Xiao-Yan, Li Gang, Lin Ling, He Bing-Jun. Research on characteristics of neuron potassium channel under low level laser irradiation. Acta Physica Sinica, 2007, 56(4): 2448-2455. doi: 10.7498/aps.56.2448
    [20] JIN PENG, PAN SHI-HONG, LIANG JI-BEN. FOURIER TRANSFORMATION STUDY OF THE FRANZ-KELDYSH OSCILLATION IN SIN+ GaAs STRUCTURES. Acta Physica Sinica, 2000, 49(9): 1821-1828. doi: 10.7498/aps.49.1821
Metrics
  • Abstract views:  7229
  • PDF Downloads:  443
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2017
  • Accepted Date:  29 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回
Baidu
map