搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hindmarsh-Rose混沌神经元自适应同步和参数识别的优化研究

马军 苏文涛 高加振

引用本文:
Citation:

Hindmarsh-Rose混沌神经元自适应同步和参数识别的优化研究

马军, 苏文涛, 高加振

Optimization of self-adaptive synchronization and parameters estimation in chaotic Hindmarsh-Rose neuron model

Ma Jun, Su Wen-Tao, Gao Jia-Zhen
PDF
导出引用
  • 以Hindmarsh-Rose混沌神经元模型为例,讨论了基于自适应同步识别混沌系统多个参数方法的优化问题. 在构造的李亚普诺夫函数中引入可调节的增益系数来控制系统同步和参数观测器的暂态过程长短. 在应用单个控制器和5个参数观测器来同步和识别Hindmarsh-Rose混沌神经元中5个未知参数时发现最小参数的识别结果出现了振荡而其他参数都能准确识别现象,分析其原因可能在于要识别的目标参数的巨大差异性. 通过增加控制器的个数(选择两个控制器)可以克服这个困难. 研究发现增益系数太小不能实现完全同步和参数的准确
    Optimization of self-adaptive synchronization is investigated to estimate a group of five unknown parameters in one certain chaotic neuron model, which is described by the Hindmarsh-Rose. Two controllable gain coefficients are introduced into the Lyapunov function, which is necessary to get the form of parameter observers and controllers for parameter estimation and synchronization, to adjust the transient period for complete synchronization and parameter identification. It is found that the identified results for the minimal parameter (three orders of magnitude less than the maximal parameter) oscillate with time (the estimated results for this parameter is not exact) while the four remaining parameters are estimated very well when one controller and five parameter observers are used to work on the driven system (response system). To the best of our knowledge, it could result from the great difference of five target parameters (values). As a result, this problem could be solved when two controllers and five parameter observers are used to change the driven system and all the unknown parameters are identified with high precision. Furthermore, longer transient period for parameter estimation and complete synchronization is required when too strong gain coefficients are used, whils parameters can not be estimated exactly if too weak gain coefficients are used. Therefore, appropriate gain coefficients are critical to achieve the shortest transient period for parameter identification and complete synchronization of chaotic systems, and the optimization of gain coefficients depends on the model being studied. Furthermore, it is confirmed by our numerical results that this scheme is effective and reliable to estimate the parameters even if some parameters jump suddenly.
    • 基金项目: 国家自然科学基金(批准号:10747005, 30670529)和兰州理工大学青年基金(批准号:Q200706)资助的课题.
    [1]

    [1]Boccaletti S, Grebogi C, Lai Y C, Mancini H, Maza D 2000 Phys. Rep. 329 103

    [2]

    [2]Boccaletti S, Kurths J, Osipov G, Valladares D L, Zhou C S 2002 Phys. Rep. 366 1

    [3]

    [3]Chen S H, Zhao L M , Liu Jie 2002 Chin. Phys. 11 543

    [4]

    [4]Yu S M ,Ma Z G ,Qiu S S, Peng S G, Lin Q H 2004 Chin. Phys.13 317

    [5]

    [5]Wang Q Yun, Lu Q S , Wang H X 2005 Chin. Phys. 14 2189

    [6]

    [6]Zou Y L, Zhu J,Chen G R 2005 Chin. Phys . 14 697

    [7]

    [7]Lü L , Zhang Q L,Guo Z A 2008 Chin. Phys. B 17 498

    [8]

    [8]Wei D Q , Luo X S 2007 Chin. Phys. 16 3244

    [9]

    [9]Wei D Q , Luo X S 2008 Chin. Phys. B 17 92

    [10]

    ]Wang F Q ,Liu C X 2007 Chin. Phys. 16 946

    [11]

    ]Ma J, Jin W Y , Li Y L 2008 Chaos,Solitons & Fractals 36 494

    [12]

    ]Wang Q Y, Jin W Y, Xia Y F 2008 Chin. Phys. Lett. 25 3582

    [13]

    ]Li Z, Han C Z 2002 Chin. Phys. 11 9

    [14]

    ]Xiao Y Z,Xu W 2007 Chin. Phys. 16 1597

    [15]

    ]Lü L,Guo Z A ,Zhang C 2007 Chin. Phys. 16 1603

    [16]

    ]Xiao Y Z, Xu W, Li X C, Tang S F 2008 Chin. Phys. B 17 80

    [17]

    ]Liu Z R, Luo J G 2006 Chin. Phys. Lett. 23 1118

    [18]

    ]Wang H X, Lu Q S, Wang Q Y 2005 Chin. Phys. Lett. 22 2173

    [19]

    ]Yang X L, Xu W 2008 Chin. Phys. B 17 2004

    [20]

    ]Li X W, Zheng Z G 2007 Commun. Theor. Phys. 47 265

    [21]

    ]Shi X , Lu Q S 2005 Chin. Phys. Lett. 22 547

    [22]

    ]Zhan M, Hu G ,Wang X G 2000 Chin. Phys. Lett. 17 332

    [23]

    ]Ho M C, Hung Y C ,Chou C H 2002 Phys. Lett. A 296 43

    [24]

    ]Shuai J W, Durand D M 1999 Phys. Lett. A 264 289

    [25]

    ]Vincent U E, Njah A N , Solarin A R T 2006 Physica A 360 186

    [26]

    ]Li G H 2007 Chin. Phys. 16 2608

    [27]

    ]Li D , Zheng Z G 2008 Chin. Phys. B 17 4009

    [28]

    ]Yang J Z , Hu G 2007 Phys. Lett. A 361 332

    [29]

    ]Yang J Z, Zhang M 2008 Commun. Theor. Phys. 49 391

    [30]

    ]Min L Q, Chen G R, Zhang X D, Zhang X H, Yang M 2004 Commun. Theor. Phys. 41 632

    [31]

    ]Jing J Y, Min L Q 2009 Chin. Phys. Lett. 26 028702

    [32]

    ]Chen Y H, Wu Z Y, Yang J Z 2007 Chin. Phys. Lett. 24 46

    [33]

    ]Li C D , Liao X F 2004 Phys. Lett. A 329 301

    [34]

    ]Shahverdiev E M , Shore K A Phys. Lett. A 292 320

    [35]

    ]Zhang H G, Ma T D,Yu W , Fu J 2008 Chin. Phys. B 17 3616

    [36]

    ]Gao J, Zheng Z G, He D Hi, Zhang T X 2003 Chin. Phys. Lett. 20 999

    [37]

    ]Mu J, Tao C , Du G H 2003 Chin. Phys. 12 381

    [38]

    ]Wu L , Zhu S Q 2003 Chin. Phys. 12 300

    [39]

    ]Lu J G , Xi Y G 2005 Chin. Phys. 14 274

    [40]

    ]Xu J F, Min L Q , Chen G R 2004 Chin. Phys. Lett. 21 1445

    [41]

    ]Shi X , Lu Q S 2005 Chin. Phys.14 77

    [42]

    ]Hindmarsh J L , Rose R M 1982 Nature 276 162

    [43]

    ]Hindmarsh J L , Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [44]

    ]Gao B J ,Lu J A 2007 Chin. Phys.16 666

    [45]

    ]Cai G L, Zheng S , Tian L X 2008 Chin. Phys. B 17 2412

    [46]

    ]Huang J 2008 Phys. Lett. A 372 4799

    [47]

    ]Wang Y W,Wen C Y, Yang M , Xiao J W 2008 Phys. Lett. A 372 2409

    [48]

    ]Zhang G, Liu Z R , Zhang J B 2008 Phys. Lett. A 372 447

    [49]

    ]Elabbasy E M, El-Dessoky M M 2006 Phys. Lett. A 349 187

    [50]

    ]Li L, Li J F, Liu Y P, Ma J, 2008 Acta Phys. Sin. 57 1404(in Chinese)[李农、李建芬、刘宇平、马健 2008 57 1404]

    [51]

    ]Li L, Li J F, Cai L , Zhang B, 2008 Acta Phys. Sin. 57 7500(in Chinese)[李农、李建芬、 蔡理、张斌 2008 57 7500]

  • [1]

    [1]Boccaletti S, Grebogi C, Lai Y C, Mancini H, Maza D 2000 Phys. Rep. 329 103

    [2]

    [2]Boccaletti S, Kurths J, Osipov G, Valladares D L, Zhou C S 2002 Phys. Rep. 366 1

    [3]

    [3]Chen S H, Zhao L M , Liu Jie 2002 Chin. Phys. 11 543

    [4]

    [4]Yu S M ,Ma Z G ,Qiu S S, Peng S G, Lin Q H 2004 Chin. Phys.13 317

    [5]

    [5]Wang Q Yun, Lu Q S , Wang H X 2005 Chin. Phys. 14 2189

    [6]

    [6]Zou Y L, Zhu J,Chen G R 2005 Chin. Phys . 14 697

    [7]

    [7]Lü L , Zhang Q L,Guo Z A 2008 Chin. Phys. B 17 498

    [8]

    [8]Wei D Q , Luo X S 2007 Chin. Phys. 16 3244

    [9]

    [9]Wei D Q , Luo X S 2008 Chin. Phys. B 17 92

    [10]

    ]Wang F Q ,Liu C X 2007 Chin. Phys. 16 946

    [11]

    ]Ma J, Jin W Y , Li Y L 2008 Chaos,Solitons & Fractals 36 494

    [12]

    ]Wang Q Y, Jin W Y, Xia Y F 2008 Chin. Phys. Lett. 25 3582

    [13]

    ]Li Z, Han C Z 2002 Chin. Phys. 11 9

    [14]

    ]Xiao Y Z,Xu W 2007 Chin. Phys. 16 1597

    [15]

    ]Lü L,Guo Z A ,Zhang C 2007 Chin. Phys. 16 1603

    [16]

    ]Xiao Y Z, Xu W, Li X C, Tang S F 2008 Chin. Phys. B 17 80

    [17]

    ]Liu Z R, Luo J G 2006 Chin. Phys. Lett. 23 1118

    [18]

    ]Wang H X, Lu Q S, Wang Q Y 2005 Chin. Phys. Lett. 22 2173

    [19]

    ]Yang X L, Xu W 2008 Chin. Phys. B 17 2004

    [20]

    ]Li X W, Zheng Z G 2007 Commun. Theor. Phys. 47 265

    [21]

    ]Shi X , Lu Q S 2005 Chin. Phys. Lett. 22 547

    [22]

    ]Zhan M, Hu G ,Wang X G 2000 Chin. Phys. Lett. 17 332

    [23]

    ]Ho M C, Hung Y C ,Chou C H 2002 Phys. Lett. A 296 43

    [24]

    ]Shuai J W, Durand D M 1999 Phys. Lett. A 264 289

    [25]

    ]Vincent U E, Njah A N , Solarin A R T 2006 Physica A 360 186

    [26]

    ]Li G H 2007 Chin. Phys. 16 2608

    [27]

    ]Li D , Zheng Z G 2008 Chin. Phys. B 17 4009

    [28]

    ]Yang J Z , Hu G 2007 Phys. Lett. A 361 332

    [29]

    ]Yang J Z, Zhang M 2008 Commun. Theor. Phys. 49 391

    [30]

    ]Min L Q, Chen G R, Zhang X D, Zhang X H, Yang M 2004 Commun. Theor. Phys. 41 632

    [31]

    ]Jing J Y, Min L Q 2009 Chin. Phys. Lett. 26 028702

    [32]

    ]Chen Y H, Wu Z Y, Yang J Z 2007 Chin. Phys. Lett. 24 46

    [33]

    ]Li C D , Liao X F 2004 Phys. Lett. A 329 301

    [34]

    ]Shahverdiev E M , Shore K A Phys. Lett. A 292 320

    [35]

    ]Zhang H G, Ma T D,Yu W , Fu J 2008 Chin. Phys. B 17 3616

    [36]

    ]Gao J, Zheng Z G, He D Hi, Zhang T X 2003 Chin. Phys. Lett. 20 999

    [37]

    ]Mu J, Tao C , Du G H 2003 Chin. Phys. 12 381

    [38]

    ]Wu L , Zhu S Q 2003 Chin. Phys. 12 300

    [39]

    ]Lu J G , Xi Y G 2005 Chin. Phys. 14 274

    [40]

    ]Xu J F, Min L Q , Chen G R 2004 Chin. Phys. Lett. 21 1445

    [41]

    ]Shi X , Lu Q S 2005 Chin. Phys.14 77

    [42]

    ]Hindmarsh J L , Rose R M 1982 Nature 276 162

    [43]

    ]Hindmarsh J L , Rose R M 1984 Proc. R. Soc. Lond. B 221 87

    [44]

    ]Gao B J ,Lu J A 2007 Chin. Phys.16 666

    [45]

    ]Cai G L, Zheng S , Tian L X 2008 Chin. Phys. B 17 2412

    [46]

    ]Huang J 2008 Phys. Lett. A 372 4799

    [47]

    ]Wang Y W,Wen C Y, Yang M , Xiao J W 2008 Phys. Lett. A 372 2409

    [48]

    ]Zhang G, Liu Z R , Zhang J B 2008 Phys. Lett. A 372 447

    [49]

    ]Elabbasy E M, El-Dessoky M M 2006 Phys. Lett. A 349 187

    [50]

    ]Li L, Li J F, Liu Y P, Ma J, 2008 Acta Phys. Sin. 57 1404(in Chinese)[李农、李建芬、刘宇平、马健 2008 57 1404]

    [51]

    ]Li L, Li J F, Cai L , Zhang B, 2008 Acta Phys. Sin. 57 7500(in Chinese)[李农、李建芬、 蔡理、张斌 2008 57 7500]

  • [1] 庞辉, 张旭. 一种基于简化电化学模型的锂电池互联状态观测器.  , 2018, 67(22): 228201. doi: 10.7498/aps.67.20181429
    [2] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略.  , 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [3] 汪芃, 李倩昀, 黄志精, 唐国宁. 在兴奋-抑制混沌神经元网络中有序波的自发形成.  , 2018, 67(17): 170501. doi: 10.7498/aps.67.20180506
    [4] 祝大伟, 涂俐兰. 随机扰动下Lorenz混沌系统的自适应同步与参数识别.  , 2013, 62(5): 050508. doi: 10.7498/aps.62.050508
    [5] 李东, 邓良明, 杜永霞, 杨媛媛. 分数阶超混沌Chen系统和分数阶超混沌Rssler系统的异结构同步.  , 2012, 61(5): 050502. doi: 10.7498/aps.61.050502
    [6] 马铁东, 江伟波, 浮洁, 柴毅, 陈立平, 薛方正. 一类分数阶混沌系统的自适应同步.  , 2012, 61(16): 160506. doi: 10.7498/aps.61.160506
    [7] 曹鹤飞, 张若洵. 基于单驱动变量分数阶混沌同步的参数调制数字通信及硬件实现.  , 2012, 61(2): 020508. doi: 10.7498/aps.61.020508
    [8] 曹鹤飞, 张若洵. 基于滑模控制的分数阶混沌系统的自适应同步.  , 2011, 60(5): 050510. doi: 10.7498/aps.60.050510
    [9] 于洪洁, 童伟君. 延迟自反馈控制Hindmarsh-Rose神经元的混沌运动.  , 2009, 58(5): 2977-2982. doi: 10.7498/aps.58.2977
    [10] 罗群, 高雅, 齐雅楠, 吴桐, 许欢, 李丽香, 杨义先. 融合复杂动态网络的模型参考自适应同步研究.  , 2009, 58(10): 6809-6817. doi: 10.7498/aps.58.6809
    [11] 张若洵, 杨洋, 杨世平. 分数阶统一混沌系统的自适应同步.  , 2009, 58(9): 6039-6044. doi: 10.7498/aps.58.6039
    [12] 闫辉, 姜洪源, 刘文剑, Ulannov A. M.. 具有迟滞非线性的金属橡胶隔振器参数识别研究.  , 2009, 58(8): 5238-5243. doi: 10.7498/aps.58.5238
    [13] 罗 群, 吴 薇, 李丽香, 杨义先, 彭海朋. 节点含时滞的不确定复杂网络的自适应同步研究.  , 2008, 57(3): 1529-1534. doi: 10.7498/aps.57.1529
    [14] 高 洋, 李丽香, 彭海朋, 杨义先, 张小红. 多重边融合复杂动态网络的自适应同步.  , 2008, 57(4): 2081-2091. doi: 10.7498/aps.57.2081
    [15] 王兴元, 赵 群. 一类不确定延迟神经网络的自适应投影同步.  , 2008, 57(5): 2812-2818. doi: 10.7498/aps.57.2812
    [16] 张若洵, 田 钢, 栗 苹, 杨世平. 一类参数不确定混沌系统的自适应同步.  , 2008, 57(4): 2073-2080. doi: 10.7498/aps.57.2073
    [17] 吕 翎, 郭治安, 李 岩, 夏晓岚. 不确定混沌系统的参数识别与同步控制器的backstepping设计.  , 2007, 56(1): 95-100. doi: 10.7498/aps.56.95
    [18] 蔡国梁, 黄娟娟. 超混沌Chen系统和超混沌R?ssler系统的异结构同步.  , 2006, 55(8): 3997-4004. doi: 10.7498/aps.55.3997
    [19] 王兴元, 武相军. 不确定Chen系统的参数辨识与自适应同步.  , 2006, 55(2): 605-609. doi: 10.7498/aps.55.605
    [20] 吴 王莹, 徐健学, 何岱海, 靳伍银. 两个非耦合Hindmarsh-Rose神经元同步的非线性特征研究.  , 2005, 54(7): 3457-3464. doi: 10.7498/aps.54.3457
计量
  • 文章访问数:  8483
  • PDF下载量:  1055
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-11
  • 修回日期:  2009-06-29
  • 刊出日期:  2010-03-15

/

返回文章
返回
Baidu
map