搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光四象限探测器测角不确定性统计分布

张伟 张合 陈勇 张祥金 徐孝彬

引用本文:
Citation:

脉冲激光四象限探测器测角不确定性统计分布

张伟, 张合, 陈勇, 张祥金, 徐孝彬

Angle measurement uncertainty statistical distribution of pulsed laser quadrant photodetector

Zhang Wei, Zhang He, Chen Yong, Zhang Xiang-Jin, Xu Xiao-Bin
PDF
导出引用
  • 针对噪声信号对脉冲激光四象限探测器(QPD)数字式测角算法产生的影响,分析了激光四象限探测器测角不确定性统计分布规律.建立了激光测角电路通道模型和QPD光敏面光斑模型,并根据随机噪声类型和理想信号类型,建立了单通道可测信号模型.考虑到QPD的对称性,对不同的理想信号时域分布类型、光斑总峰值功率、理想信号半峰宽度和等效噪声电压概率密度标准差等四种变量,在θ∈[0,π/4]的范围内通过蒙特卡罗仿真实验方法计算了五个不同光斑中心的QPD测角αy值的统计分布规律.仿真结果表明:测角αy值的统计分布呈正态分布,并被四种变量影响;特别是被单象限信噪比显著影响.光斑中心越靠近坐标轴中心,QPD测角精度越高;光斑中心不在坐标轴中心附近时QPD的测角αy的统计分布均值都小于理想测角值.
    As a positionsensitive detector, laser quadrant photodetector(QPD) is widely used in the areas such as laser guidance, laser radar and space optical communication. In the echoed laser pulse detection mode, the laser pulse signal arrived at the QPD photosensitive surface is changed in pulse amplitude, pulse width and pulse waveform due to the influences of target characteristic, atmospheric transmission and other complex factors. In addition, there are random noises in QPD itself and the signal processing circuit. These factors will have an uncertainty effect on the angle measurement accuracy of the QPD. However, the study on the statistical distribution of digital angle measurement of pulsed laser QPD has not been carried out so far. To investigate this angle measurement statistical distribution, the channel of laser angle measurement circuit and the echoed laser spot on QPD photosensitive surface should be modeled first. A measurable signal model in one quadrant of QPD processing circuit channel is established based on the type of random noise and the type of desired ideal signal. The random noise model is considered to be a Gaussian distribution, and the ideal laser pulse signal is considered to have the Gaussian or inverted parabolic distribution in the time domain. Taking into account the QPD symmetry, the statistical distributions of angle measurement value αy for five different spot centers are calculated by the Monte Carlo simulation method within the range θ0∈[0,π/4], under the conditions of different signal distribution types in the time domain, different total peak powers of the spots, different ideal signal widths at half maximum, and different standard deviations of equivalent noise voltage probability density. Simulation results show that the statistical distribution of the measured angle αy value is a normal distribution, and is influenced by the above-mentioned conditions, especially by the signaltonoise ratio in one quadrant. QPD possesses higher angular accuracy as the spot center is closer to the axis center. While the spot center is not closer to the axis center, the mean of statistical distribution of the QPD measurement angle αy is always less than the ideal angle measurement value. Therefore, in order to improve the angle measurement accuracy of the pulsed laser QPD for digital purpose, laser pulse transmit power should be increased, or the noise of each circuit channel of QPD should be reduced, or the laser pulse width should be increased by modulating appropriately.
      通信作者: 张合, hezhangz@njust.edu.cn
    • 基金项目: 武器装备预先研究项目(批准号:51305020104)资助的课题.
      Corresponding author: Zhang He, hezhangz@njust.edu.cn
    • Funds: Project supported by Weapon-equipment Pre-research Project Foundation, China(Grant No. 51305020104).
    [1]

    Fan S P, Lin D F, Lu Y L, Zong R 2014 Infrared and Laser Engineering 43 394 (in Chinese)[范世鹏, 林德福, 路宇龙, 宗睿2014红外与激光工程43 394]

    [2]

    Hu Y B, Wang M 2015 J. Optoelectron.·laser 26 2199 (in Chinese)[胡亚斌, 王苗2015光电子·激光26 2199]

    [3]

    Han C, Bai B X, Yang H M, Tong S F, Jiang H L, Fan J T 2009 Chin. J. Lasers 36 2030 (in Chinese)[韩成, 白宝兴, 杨华民, 佟首峰, 姜会林, 范静涛2009中国激光36 2030]

    [4]

    Kou T, Wang H Y, Wang F, Chen M, Xu Q 2015 Acta Opt. Sin. 35 0414001 (in Chinese)[寇添, 王海晏, 王芳, 陈闽, 徐强2015光学学报35 0414001]

    [5]

    Yan Z G, Lin Y L, Yang J, Li Z H, Bian B M 2012 Acta Phys. Sin. 61 200502 (in Chinese)[闫振纲, 林颖璐, 杨娟, 李振华, 卞保民2012 61 200502]

    [6]

    Zhang H, Chen Y S, Geng T W, Wu J B, Chen T 2015 Chin. J. Lasers 42 1217002 (in Chinese)[张辉, 陈云善, 耿天文, 吴佳彬, 陈涛2015中国激光42 1217002]

    [7]

    Lazo M M,žarko P B 2009 IEEE Trans. Instrument. Measur. 58 681

    [8]

    Xiao S R, Zhou J, Zhao J, Huang X 2013 Infrared and Laser Engineering 42 605 (in Chinese)[肖韶荣, 周洁, 赵静, 黄新2013红外与激光工程42 605]

    [9]

    Ma X Y, Guo Y M, Rao C H, Wei K, Tian Y, Rao X J 2012 Acta Phys. Sin. 61 242902 (in Chinese)[马晓燠, 郭友明, 饶长辉, 魏凯, 田雨, 饶学军2012 61 242902]

    [10]

    Lu C, Zhai Y S, Wang X J, Guo Y Y, Du Y X, Yang G S 2014 Optik 125 3519

    [11]

    Steven E J, Terry L N, Philip G, Klausutis T J 2004 Proc. SPIE 5412 72

    [12]

    Grönwall C, Steinvall O, Gustafsson F, Chevalier T 2007 Opt. Eng. 46 106201

    [13]

    Jiang H J, Lai J C, Yan W, Wang C Y, Li Z H 2013 Opt. Laser Technol. 45 278

  • [1]

    Fan S P, Lin D F, Lu Y L, Zong R 2014 Infrared and Laser Engineering 43 394 (in Chinese)[范世鹏, 林德福, 路宇龙, 宗睿2014红外与激光工程43 394]

    [2]

    Hu Y B, Wang M 2015 J. Optoelectron.·laser 26 2199 (in Chinese)[胡亚斌, 王苗2015光电子·激光26 2199]

    [3]

    Han C, Bai B X, Yang H M, Tong S F, Jiang H L, Fan J T 2009 Chin. J. Lasers 36 2030 (in Chinese)[韩成, 白宝兴, 杨华民, 佟首峰, 姜会林, 范静涛2009中国激光36 2030]

    [4]

    Kou T, Wang H Y, Wang F, Chen M, Xu Q 2015 Acta Opt. Sin. 35 0414001 (in Chinese)[寇添, 王海晏, 王芳, 陈闽, 徐强2015光学学报35 0414001]

    [5]

    Yan Z G, Lin Y L, Yang J, Li Z H, Bian B M 2012 Acta Phys. Sin. 61 200502 (in Chinese)[闫振纲, 林颖璐, 杨娟, 李振华, 卞保民2012 61 200502]

    [6]

    Zhang H, Chen Y S, Geng T W, Wu J B, Chen T 2015 Chin. J. Lasers 42 1217002 (in Chinese)[张辉, 陈云善, 耿天文, 吴佳彬, 陈涛2015中国激光42 1217002]

    [7]

    Lazo M M,žarko P B 2009 IEEE Trans. Instrument. Measur. 58 681

    [8]

    Xiao S R, Zhou J, Zhao J, Huang X 2013 Infrared and Laser Engineering 42 605 (in Chinese)[肖韶荣, 周洁, 赵静, 黄新2013红外与激光工程42 605]

    [9]

    Ma X Y, Guo Y M, Rao C H, Wei K, Tian Y, Rao X J 2012 Acta Phys. Sin. 61 242902 (in Chinese)[马晓燠, 郭友明, 饶长辉, 魏凯, 田雨, 饶学军2012 61 242902]

    [10]

    Lu C, Zhai Y S, Wang X J, Guo Y Y, Du Y X, Yang G S 2014 Optik 125 3519

    [11]

    Steven E J, Terry L N, Philip G, Klausutis T J 2004 Proc. SPIE 5412 72

    [12]

    Grönwall C, Steinvall O, Gustafsson F, Chevalier T 2007 Opt. Eng. 46 106201

    [13]

    Jiang H J, Lai J C, Yan W, Wang C Y, Li Z H 2013 Opt. Laser Technol. 45 278

  • [1] 庄杰, 韩瑞, 季振宇, 石富坤. 量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性.  , 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [2] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变.  , 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [3] 张诗琪, 杨化通. 不确定性的定量描述和熵不确定关系.  , 2023, 72(11): 110303. doi: 10.7498/aps.72.20222443
    [4] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性.  , 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [5] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [6] 张少东, 孙超, 谢磊, 刘雄厚, 王宣. 浅海波导环境不确定性对声源功率估计的影响.  , 2021, 70(24): 244301. doi: 10.7498/aps.70.20210852
    [7] 肖培, 李佳维, 贺佳港, 李锦新, 刘柱, 李高升. 一种不确定性捆扎线束电磁耦合效应的广义等效建模方法.  , 2021, 70(10): 100702. doi: 10.7498/aps.70.20201723
    [8] 颜冰, 黄思训, 冯径. 大气边界层模式中随机参数的反演与不确定性分析.  , 2018, 67(19): 199201. doi: 10.7498/aps.67.20181014
    [9] 李鹤龄, 王娟娟, 杨斌, 王亚妮, 沈宏君. 广义不确定性原理下费米气体低温热力学性质.  , 2015, 64(8): 080502. doi: 10.7498/aps.64.080502
    [10] 霍英东, 曹博, 于斌, 陈丹妮, 牛憨笨. 高精度实时主动轴向防漂移系统研究.  , 2015, 64(2): 028701. doi: 10.7498/aps.64.028701
    [11] 徐庭栋, 刘珍君, 于鸿垚, 王凯. 拉伸试验测试金属韧性的不确定性:中温脆性和应变速率脆性.  , 2014, 63(22): 228101. doi: 10.7498/aps.63.228101
    [12] 王曦, 王渝红, 李兴源, 苗淼. 考虑模型不确定性和时延的静止无功补偿器自适应滑膜控制器设计.  , 2014, 63(23): 238407. doi: 10.7498/aps.63.238407
    [13] 吴涛, 金义富, 侯睿, 杨俊杰. 不确定性边缘表示与提取的认知物理学方法.  , 2013, 62(6): 064201. doi: 10.7498/aps.62.064201
    [14] 马晓燠, 郭友明, 饶长辉, 魏凯, 田雨, 饶学军. 多阳极PMT的串扰对四象限倾斜跟踪传感器跟踪精度的影响.  , 2012, 61(24): 242902. doi: 10.7498/aps.61.242902
    [15] 马晓燠, 母杰, 饶长辉. 死区对四象限跟踪传感器跟踪精度的影响.  , 2012, 61(7): 072903. doi: 10.7498/aps.61.072903
    [16] 魏正军, 万伟, 王金东, 廖常俊, 刘颂豪. 一种基于确定性量子密钥分发误码判据的相位调制器半波电压的精确测定方法.  , 2011, 60(9): 094216. doi: 10.7498/aps.60.094216.1
    [17] 刘春香, 郭红莲, 降雨强, 李兆霖, 程丙英, 张道中. 光镊系统中光放大倍数对测量结果的影响.  , 2005, 54(3): 1162-1166. doi: 10.7498/aps.54.1162
    [18] 王兴元, 刘 明. 用滑模控制方法实现具有扇区非线性输入的主从混沌系统同步.  , 2005, 54(6): 2584-2589. doi: 10.7498/aps.54.2584
    [19] 岳 东, Jun Yoneyama. 含不确定性混沌系统的模糊自适应同步.  , 2003, 52(2): 292-297. doi: 10.7498/aps.52.292
    [20] 李智, 韩崇昭. 一类含参数不确定性混沌系统的自适应控制.  , 2001, 50(5): 847-850. doi: 10.7498/aps.50.847
计量
  • 文章访问数:  6611
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-26
  • 修回日期:  2016-09-28
  • 刊出日期:  2017-01-05

/

返回文章
返回
Baidu
map