搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轨道角动量复用三维加密全息图

方国全 林瀚 王思越 彭璞 方哲宇

引用本文:
Citation:

轨道角动量复用三维加密全息图

方国全, 林瀚, 王思越, 彭璞, 方哲宇
cstr: 32037.14.aps.74.20241444

Orbital angular momentum multiplexing three-dimensional encrypted hologram

FANG Guoquan, LIN Han, WANG Siyue, PENG Pu, FANG Zheyu
cstr: 32037.14.aps.74.20241444
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 经过几十年的发展, 全息成像已成为展示信息的成熟光学技术. 然而, 仅通过光的波长和偏振作为信息传递的载体的传统全息技术, 在信息传播的安全性和容量方面存在一定的不足. 将一种新的光学维度, 轨道角动量(orbital angular momentum, OAM), 引入全息成像为这些问题提供了一个有效的解决方案. 通过使用OAM复用的全息技术进行理论分析和仿真计算, 二维图像被加密和存储. 然后三维物体被切片为多幅二维图像, 通过OAM复用的全息技术被存储于一个相位阵列中, 实现了信息存储维度的有效降低, 并且经过OAM复用的全息技术被成功复现, 因而三维全息被实现. 此外, 每幅图按照相应拓扑荷进行加密, 信息传递的安全性被显著提升. 这种具有OAM选择性的全息技术更为安全, 信息通量更大, 具有广泛的应用潜力.
    After decades of development, holography has evolved into a sophisticated optical technology for information display. Traditional holographic techniques, which rely solely on the wavelength and polarization of light as information carriers, are limited in both security and capacity of information. The introduction of orbital angular momentum (OAM) as an additional optical dimension into holography effectively addresses these challenges. In order to maintain the OAM mode characteristics of the original image, spatial discrete sampling must be performed first. The sampled image undergoes Fourier transform to generate a discrete hologram. An OAM-selective hologram is then constructed by multiplying the discrete hologram with a spiral phase factor. By superimposing multiple selective holograms with varying topological charges, an OAM-multiplexing hologram is generated.Using this approach, computer simulations of OAM-based holography demonstrate the encryption of multiple two-dimensional images with different topological charges ($ {l}_{i} $) into an OAM-multiplexing hologram for storage. Decryption is achieved by illuminating the multiplexing hologram with a reproduction beam of a specific topological charge. When the condition ($ l'_{i}+{l}_{i}= 0 $) is satisfied, the original image associated with the corresponding topological charge is successfully reproduced.Furthermore, a three-dimensional object, such as a rose in the article, can be decomposed into multiple two-dimensional planes by using a layering method. Holograms for each layer are generated based on their spatial positions and a custom function f that assigns topological charges ($ {l}_{j} $). These holograms are stored in a phase array through OAM-multiplexing holography, effectively reducing the dimensionality of information storage. By setting different reproduction charges ($ l'_{j} $), the holograms are successfully reconstructed. The spatial position of each layer is determined by the function f, enabling the replicating and stacking of layers to achieve a three-dimensional reconstruction of the rose, including its petals, from different perspectives. This process realizes three-dimensional holography. Notably, the combination of topological charge and the function f servesacts as a cryptographic key, significantly enhancing the security of information transmission. This OAM-selective holography technology not only improves security, but also achieves higher information throughput, indicating its enormous potential in various applications.
      通信作者: 方哲宇, zhyfang@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12027807, 62225501, 62321004)、国家重点研发计划(批准号: 2020YFA0211300)和北京大学高性能计算校级公共平台资助的课题.
      Corresponding author: FANG Zheyu, zhyfang@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12027807, 62225501, 62321004), the National Key Research and Development Program of China (Grant No. 2020YFA0211300), and the University-Level Public Platform of High performance Computing of Peking University, China.
    [1]

    Lin S F, Wang D, Wang Q H, Kim E S 2020 Opt. Laser Eng. 126 105895Google Scholar

    [2]

    Lin X, Liu J, Jia J, Pan Y J, Wang Y T 2013 Opt. Express 21 20577Google Scholar

    [3]

    Shi L, Li B, Kim C, Kellnhofer P, Matusik W 2021 Nature 591 234Google Scholar

    [4]

    Choi S, Gopakumar M, Peng Y, Kim J, Wetzstein G 2021 ACM Trans. 40 240Google Scholar

    [5]

    Li X P, Ren H R, Chen X, Liu J, Li Q, Li C M Y, Xue G L, Jia J, Cao L C, Sahu A, Hu B, Wang Y T, Jin G F, Gu M 2015 Nat. Commun. 6 6984Google Scholar

    [6]

    Blanche P A 2021 Light Adv. Manuf. 2 28Google Scholar

    [7]

    Blinder D, Birnbaum T, Ito T, Shimobaba T 2022 Light Adv. Manuf. 3 35Google Scholar

    [8]

    Vyas S, Chia Y, Luo Y 2018 Opt. Express 26 21979Google Scholar

    [9]

    He Z H, Sui X M, Jin G F, Cao L C 2019 Appl. Opt. 58 A74Google Scholar

    [10]

    Bruckheimer E, Rotschild C, Dagan T, Amir G, Kaufman A, Gelman S, Birk E 2016 Eur. Heart J. Card. Img. 17 845Google Scholar

    [11]

    Gibby W, Cvetko S, Gibby A, Gibby C, Sorensen K, Andrews E G, Maroon J, Parr R 2021 J. Neurosurg. 137 489Google Scholar

    [12]

    Wan Z S, Wang Z Y, Yang X L, Shen Y J, Fu X 2020 Opt. Express 28 31043Google Scholar

    [13]

    Ngcobo S, Litvin I, Burger L, Forbes A 2013 Nat. Commun. 4 2289Google Scholar

    [14]

    Ahmed N H, Ahmed M S 2021 Int. Design J. 11 247Google Scholar

    [15]

    Kong D Z, Cao L C, Jin G F, Javidi B 2016 Appl. Opt. 55 8296Google Scholar

    [16]

    赫明钊, 曹良才, 谭峭峰, 何庆声, 金国藩 2009 光学学报 29 2709Google Scholar

    He M Z, Cao L C, Tan Q F, He Q S, Jin G F 2009 Acta Opt. Sin. 29 2709Google Scholar

    [17]

    Yan L, Xiao J, Plaskocinski T, Biabanifard M, Persheyev S, Askari M, Di Falco A 2022 Opt. Express 30 19145Google Scholar

    [18]

    Zhao R Z, Sain B, Wei Q S, Tang C C, Li X W, Weiss T, Huang LL, Wang Y T, Zentgraf T 2018 Light Sci. Appl. 7 95Google Scholar

    [19]

    Chen W, Chen X D 2016 Appl. Opt. 55 6740Google Scholar

    [20]

    Kim J, Choi J, An J, Kim N, Lee K 2005 Opt. Commun. 247 265Google Scholar

    [21]

    Zhou H, Sain B, Wang Y 2020 ACS Nano 14 5553Google Scholar

    [22]

    Fang X Y, Ren H R, Gu M 2020 Nat. Photonics 14 102Google Scholar

    [23]

    程鹏雨 2023博士学位论文 (上海: 上海大学)

    Cheng P Y 2023 Ph. D. Dissertation (Shanghai: Shanghai University

    [24]

    Wen DD, Yue F Y, Li G X, Zheng G X, Chan K L, Chen S M, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Zhang S, Chen X Z 2015 Nat. Commun. 6 8241Google Scholar

    [25]

    Willner A E, Huang H, Yan Y 2015 Adv. Opt. Photon. 7 66Google Scholar

    [26]

    柯熙政, 谢炎辰, 张颖 2019 光学学报 39 0126017Google Scholar

    Ke X Z, Xie Y C, Zhang Y 2019 Acta Opt. Sin. 39 0126017Google Scholar

    [27]

    Lei T, Zhang M, Li Y, Jia P, Liu G N, Xu X, Li Z, Min C, Lin J, Yu C, Niu H, Yuan X 2015 Light Sci. Appl. 4 257Google Scholar

    [28]

    Lim K T, Liu H, Liu Y, Yang J K 2019 Nat. Commun. 10 1Google Scholar

    [29]

    Gibson G, Courtial J, Padgett M, Vasnetsov M , Pas’ko V 2004 Opt. Express 12 5448Google Scholar

    [30]

    Gong L, Zhao Q, Zhang H, Hu XY, Huang K, Yang JM, Li Y M 2019 Light Sci. Appl. 8 27Google Scholar

    [31]

    Paturzo M, Memmolo P, Finizio A, Näsänen R, Naughton T J, Ferraro P 2010 Opt. Express 18 8806Google Scholar

    [32]

    Wang J, Liu J, Li S H, Zhao Y F, Du J, Zhu L 2022 Nanophotonics 11 645Google Scholar

    [33]

    Zhong Z Q, Tang WH, Yuan H, Zhang B 2023 Opt. Laser Technol. 169 110081Google Scholar

    [34]

    Raveh D, Pokharel S, Korotkova O 2023 Opt. Lett. 48 2405Google Scholar

    [35]

    Willner A E, Pang K, Song H, Zou K, Zhou H 2021 Appl. Phys. Rev. 8 041312Google Scholar

    [36]

    Pizzo A, Sanguinetti L, Marzetta T L 2022 IEEE Trans. Wire. Commun. 21 6890Google Scholar

    [37]

    Salgado-Remacha F J 2016 Opt. Laser Technol. 85 30Google Scholar

  • 图 1  (a)得到离散全息图的示意图, 其能保留OAM模式特征; (b)最小采样间距-拓扑荷关系示意图; (c) OAM选择性全息图的示意图和使用不同拓扑荷进行解旋的效果示意图; (d)多路复用全息图制作示意图; (e)使用携带不同拓扑荷的光对多路复用全息图进行解旋的过程示意图

    Fig. 1.  (a) Schematic of obtaining a discrete hologram, which preserves the OAM mode characteristics; (b) schematic of the relationship between the minimum sampling interval and topological charge; (c) schematic of an OAM-selective hologram and the effect of demodulating with different topological charges; (d) schematic of the process of creating a OAM-multiplexing hologram; (e) schematic of the process of demodulating the OAM-multiplexing hologram using light with different topological charges.

    图 2  (a)多路复用OAM相位全息图计算机制作流程; (b)使用多路复用OAM相位全息图进行复现流程

    Fig. 2.  (a) Workflow for generating an OAM-multiplexing phase hologram using a computer; (b) workflow for reproducing using the OAM-multiplexing phase hologram.

    图 3  (a)原图图例; (b)多路复用OAM相位全息图; (c)使用不同螺旋相位指数进行解旋得到的复现图

    Fig. 3.  (a) Original image illustration; (b) OAM-multiplexing phase hologram; (c) reconstructed images obtained by demodulating with different helical phase indices.

    图 4  (a)左图为三维玫瑰建模图, 中间图为3D单瓣玫瑰原图, 右图为简化的3D玫瑰原图; (b)左图为单瓣玫瑰的OAM多通道复用相位全息图, 右图为简化玫瑰的OAM多通道复用相位全息图; (c)多视角下的单瓣花瓣的三维全息复现还原图; (d)多视角下的玫瑰的三维全息复现还原图, 每个坐标图的x, y, z坐标轴的单位是任意单位

    Fig. 4.  (a) Left image shows a 3D rose model, the middle image is the original 3D single-petal rose, and the right image is a simplified version of the original 3D rose; (b) the left image is the OAM-multiplexing phase hologram of the single-petal rose, and the right image is the OAM-multiplexing phase hologram of the simplified rose; (c) 3D holographic reconstruction of the single-petal rose from multiple perspectives; (d) 3D holographic reconstruction of the rose from multiple perspectives, with the units of the x, y, z axes in each coordinate plot being arbitrary units.

    Baidu
  • [1]

    Lin S F, Wang D, Wang Q H, Kim E S 2020 Opt. Laser Eng. 126 105895Google Scholar

    [2]

    Lin X, Liu J, Jia J, Pan Y J, Wang Y T 2013 Opt. Express 21 20577Google Scholar

    [3]

    Shi L, Li B, Kim C, Kellnhofer P, Matusik W 2021 Nature 591 234Google Scholar

    [4]

    Choi S, Gopakumar M, Peng Y, Kim J, Wetzstein G 2021 ACM Trans. 40 240Google Scholar

    [5]

    Li X P, Ren H R, Chen X, Liu J, Li Q, Li C M Y, Xue G L, Jia J, Cao L C, Sahu A, Hu B, Wang Y T, Jin G F, Gu M 2015 Nat. Commun. 6 6984Google Scholar

    [6]

    Blanche P A 2021 Light Adv. Manuf. 2 28Google Scholar

    [7]

    Blinder D, Birnbaum T, Ito T, Shimobaba T 2022 Light Adv. Manuf. 3 35Google Scholar

    [8]

    Vyas S, Chia Y, Luo Y 2018 Opt. Express 26 21979Google Scholar

    [9]

    He Z H, Sui X M, Jin G F, Cao L C 2019 Appl. Opt. 58 A74Google Scholar

    [10]

    Bruckheimer E, Rotschild C, Dagan T, Amir G, Kaufman A, Gelman S, Birk E 2016 Eur. Heart J. Card. Img. 17 845Google Scholar

    [11]

    Gibby W, Cvetko S, Gibby A, Gibby C, Sorensen K, Andrews E G, Maroon J, Parr R 2021 J. Neurosurg. 137 489Google Scholar

    [12]

    Wan Z S, Wang Z Y, Yang X L, Shen Y J, Fu X 2020 Opt. Express 28 31043Google Scholar

    [13]

    Ngcobo S, Litvin I, Burger L, Forbes A 2013 Nat. Commun. 4 2289Google Scholar

    [14]

    Ahmed N H, Ahmed M S 2021 Int. Design J. 11 247Google Scholar

    [15]

    Kong D Z, Cao L C, Jin G F, Javidi B 2016 Appl. Opt. 55 8296Google Scholar

    [16]

    赫明钊, 曹良才, 谭峭峰, 何庆声, 金国藩 2009 光学学报 29 2709Google Scholar

    He M Z, Cao L C, Tan Q F, He Q S, Jin G F 2009 Acta Opt. Sin. 29 2709Google Scholar

    [17]

    Yan L, Xiao J, Plaskocinski T, Biabanifard M, Persheyev S, Askari M, Di Falco A 2022 Opt. Express 30 19145Google Scholar

    [18]

    Zhao R Z, Sain B, Wei Q S, Tang C C, Li X W, Weiss T, Huang LL, Wang Y T, Zentgraf T 2018 Light Sci. Appl. 7 95Google Scholar

    [19]

    Chen W, Chen X D 2016 Appl. Opt. 55 6740Google Scholar

    [20]

    Kim J, Choi J, An J, Kim N, Lee K 2005 Opt. Commun. 247 265Google Scholar

    [21]

    Zhou H, Sain B, Wang Y 2020 ACS Nano 14 5553Google Scholar

    [22]

    Fang X Y, Ren H R, Gu M 2020 Nat. Photonics 14 102Google Scholar

    [23]

    程鹏雨 2023博士学位论文 (上海: 上海大学)

    Cheng P Y 2023 Ph. D. Dissertation (Shanghai: Shanghai University

    [24]

    Wen DD, Yue F Y, Li G X, Zheng G X, Chan K L, Chen S M, Chen M, Li K F, Wong P W H, Cheah K W, Pun E Y B, Zhang S, Chen X Z 2015 Nat. Commun. 6 8241Google Scholar

    [25]

    Willner A E, Huang H, Yan Y 2015 Adv. Opt. Photon. 7 66Google Scholar

    [26]

    柯熙政, 谢炎辰, 张颖 2019 光学学报 39 0126017Google Scholar

    Ke X Z, Xie Y C, Zhang Y 2019 Acta Opt. Sin. 39 0126017Google Scholar

    [27]

    Lei T, Zhang M, Li Y, Jia P, Liu G N, Xu X, Li Z, Min C, Lin J, Yu C, Niu H, Yuan X 2015 Light Sci. Appl. 4 257Google Scholar

    [28]

    Lim K T, Liu H, Liu Y, Yang J K 2019 Nat. Commun. 10 1Google Scholar

    [29]

    Gibson G, Courtial J, Padgett M, Vasnetsov M , Pas’ko V 2004 Opt. Express 12 5448Google Scholar

    [30]

    Gong L, Zhao Q, Zhang H, Hu XY, Huang K, Yang JM, Li Y M 2019 Light Sci. Appl. 8 27Google Scholar

    [31]

    Paturzo M, Memmolo P, Finizio A, Näsänen R, Naughton T J, Ferraro P 2010 Opt. Express 18 8806Google Scholar

    [32]

    Wang J, Liu J, Li S H, Zhao Y F, Du J, Zhu L 2022 Nanophotonics 11 645Google Scholar

    [33]

    Zhong Z Q, Tang WH, Yuan H, Zhang B 2023 Opt. Laser Technol. 169 110081Google Scholar

    [34]

    Raveh D, Pokharel S, Korotkova O 2023 Opt. Lett. 48 2405Google Scholar

    [35]

    Willner A E, Pang K, Song H, Zou K, Zhou H 2021 Appl. Phys. Rev. 8 041312Google Scholar

    [36]

    Pizzo A, Sanguinetti L, Marzetta T L 2022 IEEE Trans. Wire. Commun. 21 6890Google Scholar

    [37]

    Salgado-Remacha F J 2016 Opt. Laser Technol. 85 30Google Scholar

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究.  , 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 贾谊成, 张福荣, 张景风, 孔令军, 张向东. 三维空间轨道角动量全息.  , 2024, 73(9): 094202. doi: 10.7498/aps.73.20231822
    [3] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响.  , 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [4] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生.  , 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [5] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成.  , 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [6] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [7] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术.  , 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [8] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [9] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性.  , 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [10] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制.  , 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [11] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统.  , 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [12] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究.  , 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [13] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究.  , 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [14] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究.  , 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [15] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究.  , 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [16] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究.  , 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [17] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究.  , 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [18] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递.  , 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [19] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究.  , 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转.  , 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  355
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-16
  • 修回日期:  2025-01-06
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map