-
Perovskite is a material with excellent photovoltaic properties, and the efficiency of perovskite solar cells has increased rapidly in recent years. By utilizing the adjustable bandgap characteristics of perovskite materials, wide-bandgap perovskite solar cells can be combined with narrow-bandgap solar cells to make tandem solar cells. Tandem devices can improve the utilization of the solar spectra and achieve higher power conversion efficiency. An important prerequisite for preparing efficient photovoltaic devices is to fabricate high-quality perovskite active layers. Antisolvent-assisted spin-coating is currently a commonly used method for preparing high-quality perovskite films in the laboratory. However, the low solubility of inorganic cesium and bromine salts in the preparation of wide-bandgap perovskite thin films leads to a fast crystallization rate, poor crystallization quality and a large number of defects, seriously reducing the photovoltaic performance of the devices. In addition, the antisolvent has a narrow working window, which is not conducive to the preparation of large-area perovskite films. In this work, a mild gas quenching process is used to assist the spin-coating method in preparing wide-bandgap perovskite films, and propylamine hydrochloride is introduced as an additive to improve the crystallization quality and uniformity of large-area preparation of perovskite film. The interaction between the propylamine cation and the perovskite component produces a two-dimensional perovskite phase. Two-dimensional phase is used as the growth template for perovskite composition in order to reduce the formation energy of α-phase perovskite, which is beneficial to uniform nucleation and preferential orientation growth of perovskite, the increase of grain size and the decrease of grain boundaries within the film. The improvement of the crystalline quality of the perovskite film can reduce the defect density inside the film and suppress the non-radiative recombination of the photogenerated carriers. The perovskite solar cell with a bandgap of 1.68 eV, prepared by using this strategy, achieves a power conversion efficiency of 21.48%. In addition, the 8 cm×8 cm wide-bandgap perovskite films prepared by this method exhibit good uniformity. This work provides a strategy for developing the process of efficient and large-area perovskite photovoltaic devices.
-
Keywords:
- wide-bandgap perovskite /
- gas quenching /
- propylamine hydrochloride /
- crystallization
[1] Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q L, Bati A S R, Wan H Y, Wang Z W, Zeng L W, Wang J K, Serles P, Liu Y, Teale S, Liu Y J, Saidaminov M I, Li M Z, Rolston N, Hoogland S, Filleter T, MercouriG. Kanatzidis, Chen B, Ning Z J, Sargent E H 2024 Science 384 189Google Scholar
[2] Chen B, Zheng X P, Bai Y, Padture N P, Huang J S 2017 Adv. Energy Mater. 7 1602400Google Scholar
[3] Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar
[4] LONGi https://www.longi.com/en/news/2024-snec-silicon-perovskite-tandem-solar-cells-new-world-efficiency/ [2024-6-21]
[5] Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X M, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y F, Zhu K 2022 Nature 611 278Google Scholar
[6] Azmi R, Ugur E, Seitkhan A, Aljamaan F, Subbiah A S, Liu J, Harrison G T, Nugraha M I, Eswaran M K, Babics M, Chen Y, Xu F, Allen T G, Rehman A U, Wang C L, Anthopoulos T D, Schwingenschlögl U, Bastiani M D, Aydin E, Wolf S D 2022 Science 376 73Google Scholar
[7] Chen C, Jiang Y, Feng Y C, Li Z X, Cao N J, Zhou G F, Liu J M, Kempa K, Feng S P, Gao J W 2021 Mater. Today Phys. 21 100565Google Scholar
[8] Huang H H, Liu Q H, Tsai H, Shrestha S, Su L Y, Chen P T, Chen Y T, Yang T A, Lu H, Chuang C H, Lin K F, Rwei S P, Nie W, Wang L 2021 Joule 5 958Google Scholar
[9] Yu Y, Zhang F, Hou T, Sun X, Yu H, Zhang M 2021 Sol. RRL 5 2100386Google Scholar
[10] Zhang X, Qiu W M, Song W Y, Hawash Z, Wang Y X, Pradhan B, Zhang Y Y, Naumenko D, Amenitsch H, Moons E, Merckx T, Aguirre A, Abdulraheem Y, Aernouts T, Zhan Y Q, Kuang Y H, Hofkens J, Poortmans J 2022 Sol. RRL 6 2200053Google Scholar
[11] Szostak R, Sanchez S, Marchezi P E, Marques A S, Silva J C, Holanda M S, Hagfeldt A, Tolentino H C N, Nogueira A F 2020 Adv. Funct. Mater. 31 2007473Google Scholar
[12] Kaczaral S C, Morales D A, Schreiber S W, Martinez D, Conley A M, Herath R, Eperon G E, Choi J J, McGehee M D, Moore D T 2023 APL Energy 1 036112Google Scholar
[13] Liu L, Yang Y, Du M Y, Cao Y X, Ren X D, Zhang L, Wang H, Zhao S, Wang K, Liu S Z 2022 Adv. Energy Mate. 13 2202802Google Scholar
[14] Tong Y, Najar A, Wang L, Liu L, Du M Y, Yang J, Li J X, Wang K, Liu S Z 2022 Adv. Sci. 9 2105085Google Scholar
[15] Nie T, Fang Z M, Ren X D, Duan Y, Liu S Z 2023 Nano-Micro Lett. 15 70Google Scholar
[16] Bush K A, Frohna K, Prasanna R, Beal R E, Leijtens T, Swifter S A, McGehee M D 2018 ACS Energy Lett. 3 428Google Scholar
[17] Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar
[18] Jiang Q, Tong J H, Scheidt R A, Wang X M, Louks A E, Xian Y M, Tirawat R, Palmstrom A F, Hautzinger M P, Harvey S P, Johnston S, Schelhas L T, Larson B W, Warren E L, Beard M C, Berry J J, Yan Y, Zhu K 2022 Science 378 1295Google Scholar
[19] Wen J, Zhao Y C, Liu Z, Gao H, Lin R X, Wan S S, Ji C L, Xiao K, Gao Y, Tian Y X, Xie J, Brabec C J, Tan H R 2022 Adv. Mater. 34 2110356Google Scholar
[20] Kim M J, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar
[21] Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar
[22] Li F Z, Deng X, Shi Z S, Wu S F, Zeng Z X, Wang D, Li Y, Qi F, Zhang Z M, Yang Z B, Jang S H, Lin F R, Tsang S W, Chen X K, Jen A K Y 2023 Nat. Photonics 17 478Google Scholar
[23] Yao Q, Xie Y M, Zhou Y Z, Xue Q F, Xu X, Gao Y J, Niu T Q, Chu L H, Zhou Z S, Lin F R, Jen A K Y, Shi T T, Yip H L, Cao Y 2023 Adv. Funct. Mater. 33 2212599Google Scholar
[24] Qiao L, Ye T S, Wang P S, Wang T, Zhang L, Sun R T, Kong W Y, Yang X D 2023 Adv. Funct. Mater. 34 2308908Google Scholar
[25] Zhang X P, Li X Y, Tao L, Zhang Z M, Ling H, Fu X, Wang S B, Ko M J, Luo J S, Chen J Z, Li Y L 2023 Small 19 2208289Google Scholar
[26] Yao Q, Xue Q F, Li Z C, Zhang K C, Zhang T, Li N, Yang S H, Brabec C J, Yip H L, Cao Y 2020 Adv. Mater. 32 2000571Google Scholar
[27] Bu T L, Ono L K, Li J, Su J, Tong G Q, Zhang W, Liu Y Q, Zhang J H, Chang J J, Kazaoui S, Huang F Z, Cheng Y B, Qi Y B 2022 Nature Energy 7 528Google Scholar
[28] Huang Y, Liang J H, Zhang Z F, Zheng Y T, Wu X Y, Tian C C, Zhou Z, Wang J L, Yang Y J, Sun A X, Liu Y, Tang C, Chen Z H, Chen C C 2022 Small Methods 6 2200933Google Scholar
[29] Yan N, Gao Y, Yang J J, Fang Z M, Feng J S, Wu X J, Chen T, Liu S Z 2023 Angew. Chem. Int. Edit. 62 e202216668Google Scholar
[30] He R, Yi Z J, Luo Y, Luo J C, Wei Q, Lai H G, Huang H, Zou B S, Cui G Y, Wang W W, Xiao C X, Ren S Q, Chen C, Wang C L, Xing G H, Fu F, Zhao D W 2022 Adv. Sci. 9 2203210Google Scholar
[31] Le Corre V M, Duijnstee E A, El Tambouli O, Ball J M, Snaith H J, Lim J, Koster L J A 2021 ACS Energy Lett. 6 1087Google Scholar
-
图 1 钙钛矿薄膜的结构特性表征 (a) 参考组薄膜的表面SEM图像; (b) 实验组薄膜的表面SEM图像; (c) 参考组和实验组薄膜的XRD图谱; (d) 参考组和实验组薄膜的UV-vis曲线
Figure 1. Characterization of structural properties of perovskite films: (a) Top-view SEM image of control perovskite films; (b) top-view SEM image of PACl-treated perovskite films; (c) XRD patterns of control and PACl-treated films; (d) UV-vis curves of control and PACl-treated films.
图 3 钙钛矿薄膜的结晶动力学表征 (a) 参考组钙钛矿前驱膜在不同温度下退火3 min的XRD图谱; (b) 实验组钙钛矿前驱膜在不同温度下退火3 min的XRD图谱
Figure 3. Characterization of crystallization kinetics of perovskite films: (a) XRD patterns of control perovskite precursor films annealed at different temperatures for 3 min; (b) XRD patterns of PACl-treated perovskite precursor films annealed at different temperatures for 3 min.
图 4 PACl对钙钛矿薄膜的结晶调控作用 (a) 2D钙钛矿薄膜和添加PACl的钙钛矿前驱膜的XRD图谱; (b) 参考组钙钛矿前驱膜表面SEM图; (c) 实验组钙钛矿前驱膜表面SEM图
Figure 4. Crystalline modulation of perovskite thin films by PACl: (a) XRD patterns of 2D perovskite films and PACl-treated perovskite precursor films; (b) top-view SEM image of control perovskite precursor films; (c) top-view SEM image of PACl-treated perovskite precursor films.
图 10 大面积钙钛矿薄膜的均匀性表征 (a) 参考组大面积钙钛矿薄膜不同位置的UV-vis曲线(插图为8 cm×8 cm的钙钛矿薄膜实物图); (b) 实验组大面积钙钛矿薄膜不同位置的UV-vis曲线
Figure 10. Homogeneity characterization of large-area perovskite films: (a) UV-vis curves of control large-area perovskite films at different positions (the inset shows a picture of a perovskite film with a size of 8 cm×8 cm); (b) UV-vis curves of PACl-treated large-area perovskite films at different positions.
图 11 大面积钙钛矿薄膜的厚度均匀性表征 (a) 参考组大面积钙钛矿薄膜不同位置的截面SEM图像; (b) 实验组大面积钙钛矿薄膜不同位置的截面SEM图像
Figure 11. Characterization of large-area perovskite films thickness homogeneity: (a) Cross-sectional SEM images of control large-area perovskite films at different positions; (b) cross-sectional SEM images of PACl-treated large-area perovskite films at different positions.
表 1 参考组和实验组钙钛矿薄膜的TRPL光谱拟合参数
Table 1. Fitting parameters of TRPL spectra of control and PACl-treated perovskite films.
Sample τ1/ns τ2/ns A1/% A2/% τave/ns Control 64.9 732.3 9.69 90.31 667.7 PACl 62.8 1115.5 3.65 96.35 1077.1 表 2 不同制备条件下钙钛矿太阳电池的J-V性能参数
Table 2. J-V performance parameters of perovskite solar cells under different preparation conditions.
Device VOC/V JSC/(mA·cm–2) FF/% PCE/% W/O N2 & PACl 1.096 18.70 73.85 15.14 With N2 1.184 19.66 81.61 18.99 With PACl 1.177 19.63 80.33 18.56 With N2 & PACl 1.226 20.65 82.87 20.99 表 3 参考组和实验组最佳钙钛矿太阳电池的J-V性能参数
Table 3. J-V performance parameters of control and PACl-treated best perovskite solar cells.
Device Scan direction VOC/V JSC/(mA·cm–2) FF/% PCE/% Control Reverse 1.180 20.06 81.83 19.38 Forward 1.175 20.02 77.52 18.24 PACl Reverse 1.246 20.61 83.64 21.48 Forward 1.236 20.60 81.15 20.67 -
[1] Chen H, Liu C, Xu J, Maxwell A, Zhou W, Yang Y, Zhou Q L, Bati A S R, Wan H Y, Wang Z W, Zeng L W, Wang J K, Serles P, Liu Y, Teale S, Liu Y J, Saidaminov M I, Li M Z, Rolston N, Hoogland S, Filleter T, MercouriG. Kanatzidis, Chen B, Ning Z J, Sargent E H 2024 Science 384 189Google Scholar
[2] Chen B, Zheng X P, Bai Y, Padture N P, Huang J S 2017 Adv. Energy Mater. 7 1602400Google Scholar
[3] Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar
[4] LONGi https://www.longi.com/en/news/2024-snec-silicon-perovskite-tandem-solar-cells-new-world-efficiency/ [2024-6-21]
[5] Jiang Q, Tong J H, Xian Y M, Kerner R A, Dunfield S P, Xiao C X, Scheidt R A, Kuciauskas D, Wang X M, Hautzinger M P, Tirawat R, Beard M C, Fenning D P, Berry J J, Larson B W, Yan Y F, Zhu K 2022 Nature 611 278Google Scholar
[6] Azmi R, Ugur E, Seitkhan A, Aljamaan F, Subbiah A S, Liu J, Harrison G T, Nugraha M I, Eswaran M K, Babics M, Chen Y, Xu F, Allen T G, Rehman A U, Wang C L, Anthopoulos T D, Schwingenschlögl U, Bastiani M D, Aydin E, Wolf S D 2022 Science 376 73Google Scholar
[7] Chen C, Jiang Y, Feng Y C, Li Z X, Cao N J, Zhou G F, Liu J M, Kempa K, Feng S P, Gao J W 2021 Mater. Today Phys. 21 100565Google Scholar
[8] Huang H H, Liu Q H, Tsai H, Shrestha S, Su L Y, Chen P T, Chen Y T, Yang T A, Lu H, Chuang C H, Lin K F, Rwei S P, Nie W, Wang L 2021 Joule 5 958Google Scholar
[9] Yu Y, Zhang F, Hou T, Sun X, Yu H, Zhang M 2021 Sol. RRL 5 2100386Google Scholar
[10] Zhang X, Qiu W M, Song W Y, Hawash Z, Wang Y X, Pradhan B, Zhang Y Y, Naumenko D, Amenitsch H, Moons E, Merckx T, Aguirre A, Abdulraheem Y, Aernouts T, Zhan Y Q, Kuang Y H, Hofkens J, Poortmans J 2022 Sol. RRL 6 2200053Google Scholar
[11] Szostak R, Sanchez S, Marchezi P E, Marques A S, Silva J C, Holanda M S, Hagfeldt A, Tolentino H C N, Nogueira A F 2020 Adv. Funct. Mater. 31 2007473Google Scholar
[12] Kaczaral S C, Morales D A, Schreiber S W, Martinez D, Conley A M, Herath R, Eperon G E, Choi J J, McGehee M D, Moore D T 2023 APL Energy 1 036112Google Scholar
[13] Liu L, Yang Y, Du M Y, Cao Y X, Ren X D, Zhang L, Wang H, Zhao S, Wang K, Liu S Z 2022 Adv. Energy Mate. 13 2202802Google Scholar
[14] Tong Y, Najar A, Wang L, Liu L, Du M Y, Yang J, Li J X, Wang K, Liu S Z 2022 Adv. Sci. 9 2105085Google Scholar
[15] Nie T, Fang Z M, Ren X D, Duan Y, Liu S Z 2023 Nano-Micro Lett. 15 70Google Scholar
[16] Bush K A, Frohna K, Prasanna R, Beal R E, Leijtens T, Swifter S A, McGehee M D 2018 ACS Energy Lett. 3 428Google Scholar
[17] Bush K A, Manzoor S, Frohna K, Yu Z J, Raiford J A, Palmstrom A F, Wang H P, Prasanna R, Bent S F, Holman Z C, McGehee M D 2018 ACS Energy Lett. 3 2173Google Scholar
[18] Jiang Q, Tong J H, Scheidt R A, Wang X M, Louks A E, Xian Y M, Tirawat R, Palmstrom A F, Hautzinger M P, Harvey S P, Johnston S, Schelhas L T, Larson B W, Warren E L, Beard M C, Berry J J, Yan Y, Zhu K 2022 Science 378 1295Google Scholar
[19] Wen J, Zhao Y C, Liu Z, Gao H, Lin R X, Wan S S, Ji C L, Xiao K, Gao Y, Tian Y X, Xie J, Brabec C J, Tan H R 2022 Adv. Mater. 34 2110356Google Scholar
[20] Kim M J, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar
[21] Park J, Kim J, Yun H S, Paik M J, Noh E, Mun H J, Kim M G, Shin T J, Seok S I 2023 Nature 616 724Google Scholar
[22] Li F Z, Deng X, Shi Z S, Wu S F, Zeng Z X, Wang D, Li Y, Qi F, Zhang Z M, Yang Z B, Jang S H, Lin F R, Tsang S W, Chen X K, Jen A K Y 2023 Nat. Photonics 17 478Google Scholar
[23] Yao Q, Xie Y M, Zhou Y Z, Xue Q F, Xu X, Gao Y J, Niu T Q, Chu L H, Zhou Z S, Lin F R, Jen A K Y, Shi T T, Yip H L, Cao Y 2023 Adv. Funct. Mater. 33 2212599Google Scholar
[24] Qiao L, Ye T S, Wang P S, Wang T, Zhang L, Sun R T, Kong W Y, Yang X D 2023 Adv. Funct. Mater. 34 2308908Google Scholar
[25] Zhang X P, Li X Y, Tao L, Zhang Z M, Ling H, Fu X, Wang S B, Ko M J, Luo J S, Chen J Z, Li Y L 2023 Small 19 2208289Google Scholar
[26] Yao Q, Xue Q F, Li Z C, Zhang K C, Zhang T, Li N, Yang S H, Brabec C J, Yip H L, Cao Y 2020 Adv. Mater. 32 2000571Google Scholar
[27] Bu T L, Ono L K, Li J, Su J, Tong G Q, Zhang W, Liu Y Q, Zhang J H, Chang J J, Kazaoui S, Huang F Z, Cheng Y B, Qi Y B 2022 Nature Energy 7 528Google Scholar
[28] Huang Y, Liang J H, Zhang Z F, Zheng Y T, Wu X Y, Tian C C, Zhou Z, Wang J L, Yang Y J, Sun A X, Liu Y, Tang C, Chen Z H, Chen C C 2022 Small Methods 6 2200933Google Scholar
[29] Yan N, Gao Y, Yang J J, Fang Z M, Feng J S, Wu X J, Chen T, Liu S Z 2023 Angew. Chem. Int. Edit. 62 e202216668Google Scholar
[30] He R, Yi Z J, Luo Y, Luo J C, Wei Q, Lai H G, Huang H, Zou B S, Cui G Y, Wang W W, Xiao C X, Ren S Q, Chen C, Wang C L, Xing G H, Fu F, Zhao D W 2022 Adv. Sci. 9 2203210Google Scholar
[31] Le Corre V M, Duijnstee E A, El Tambouli O, Ball J M, Snaith H J, Lim J, Koster L J A 2021 ACS Energy Lett. 6 1087Google Scholar
Catalog
Metrics
- Abstract views: 1455
- PDF Downloads: 40
- Cited By: 0