搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预取向半晶态高分子片晶结构形成微观机理及其应力-应变响应特性的分子动力学模拟

杨俊升 朱子亮 曹启龙

引用本文:
Citation:

预取向半晶态高分子片晶结构形成微观机理及其应力-应变响应特性的分子动力学模拟

杨俊升, 朱子亮, 曹启龙

Effect of pre-orientation on formation of microstructure of lamella crystal and the stress response of semicrystalline polymers: Molecular dynamics simulations

Yang Jun-Sheng, Zhu Zi-Liang, Cao Qi-Long
PDF
HTML
导出引用
  • 通过分子动力学模拟方法对不同预取向聚乙烯醇熔体(polyvinyl alcohol, PVA)形成的半晶态高分子熔体形成核结晶及拉伸过程中的应力-应变响应特性进行了系统地研究. 模拟结果显示预取向度高的PVA熔体对应更快的成核动力学. 通过追踪全trans伸直链长度(d tt)、成核原子维诺体积(V )和中心对称参数(S)等序参量在不同取向度熔体下的等温成核与结晶演化过程, 给出了PVA熔体成核路径及形成半晶态的分子构象; 通过对形成的半晶态高分子结构进一步分析, 发现随着熔体取向度的增加, 晶体和无定型对应的取向度也会增加, 但是当应变剪切大于5时, 其对应的结晶度、晶体和无定型取向度不再发生变化; 通过对无定型区链结构的定义与分析, 可知取向度越高的熔体对应越高的Tie链数目, 随着熔体取向度的增加, Loop链的数目也会减小; 通过恒速拉伸应力测试可知, 所形成半晶态高分子结构力学响应会随着取向度及Tie链数增加而增加, 当取向及Tie链数目相同时, 应力-应变曲线形状大小也基本保持一致.
    Molecular dynamics simulations have been used to study the effect of the pre-orientation on the microstructure of lamella crystal and the stress response of polyvinyl alcohol (PVA) semicrystalline polymer under stretching. For the different pre-oriented systems, nucleation is demonstrated to be a two-step process, however, in a different intermediate order. For the isotropic PVA polymer melt, the segment needs more time to adjust its inter-chain structure, therefore, the nucleation is assisted by local order structures, while the nucleation of the oriented PVA melt is promoted by density fluctuation. The nucleation process is the result of coupling effect of conformational and orientational ordering. The transformation from flexible chains into conformational ordered segments circumvents the entropic penalty under the shear flow, which is the most peculiar and rate-limited step in polymer crystallization. Therefore, the current work suggests that the acceleration of the nucleation rate by shear deformation is mainly attributed to the different kinetic pathway via conformational/orientational ordering-density fluctuation-nucleation. From the different pre-oriented PVA semicrystalline polymers, we know that the higher oriented degree corresponds to a higher number of Tie chains and lower Loop chains, and the higher number of Tie chains corresponds to a stronger stress-strain response. And the detailed molecular structural evolution of semicrystalline polymer under stretching is also given in this work.
      通信作者: 杨俊升, yangjunsheng2005@163.com ; 曹启龙, qlcao@mail.ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11704329)、四川省教育厅科研基金(批准号: 15ZB293)和宜宾学院计算物理四川省高等学校重点实验室开放课题基金(批准号: JSWL2014KFZ02)资助的课题
      Corresponding author: Yang Jun-Sheng, yangjunsheng2005@163.com ; Cao Qi-Long, qlcao@mail.ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11704329), the Scientific Research Fund of Sichuan Provincial Education Department, China (Grant No. 15ZB293), and the Open Research Fund of Computational Physics Key Laboratory of Sichuan province, Yibin University, China (JSWL2014KF02)
    [1]

    Li L, de Jeu W 2005 Adv. Polym. Sci. 181 75

    [2]

    Liu D, Cui K, Huang N, Wang Z, Li L 2015 Sci. China Chem. 58 1570Google Scholar

    [3]

    Stephanou P S, Tsimouri I C, Mavrantzas V G 2016 Macromolecules 49 3161Google Scholar

    [4]

    Luo C, Kröger M, Sommer J U 2016 Macromolecules 49 9017Google Scholar

    [5]

    Luo C, Kröger M, Sommer J U 2017 Polymer 109 71Google Scholar

    [6]

    Tang X, Yang J, Xu T, Tian F, Xie C, Li L 2017 Phys. Rev. Mate. 1 073401

    [7]

    Yang J, Tang X, Wang Z, Xu T, Tian F, Ji Y, Li L 2017 J. Chem. Phys. 146 014901Google Scholar

    [8]

    Tang X, Yang J, Tian F, Xu T, Xie C, Chen W, Li L 2018 J. Chem. Phys. 149 224901Google Scholar

    [9]

    Yamamoto T 2014 Macromolecules 47 3192Google Scholar

    [10]

    Baig C, Edwards B J 2010 Europhys. Lett. 89 36003Google Scholar

    [11]

    Yang J S, Yang C, Wang M, Chen B, Ma X 2011 Phys. Chem. Chem. Phys. 13 15476Google Scholar

    [12]

    Yang J S, Huang D H, Cao Q, Li Q, Wang L, Wang F 2013 Chin. Phys. B 22 098101Google Scholar

    [13]

    杨俊升, 黄多辉 2019 68 138301Google Scholar

    Yang J S, Huang D H 2019 Acta Phys. Sin. 68 138301Google Scholar

    [14]

    杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国 2017 66 227101Google Scholar

    Yang W L, Han J S, Wang Y, Lin J Q, He G Q, Sun H G 2017 Acta Phys. Sin. 66 227101Google Scholar

    [15]

    潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红 2019 68 176801Google Scholar

    Pan D, Liu C X, Zhang Z Y, Gao Y J, Hao X H 2019 Acta Phys. Sin. 68 176801Google Scholar

    [16]

    Cui K, Ma Z, Wang Z, Ji Y, Liu D, Huang N, Chen L, Zhang W, Li L 2015 Macromolecules 48 5276Google Scholar

    [17]

    Cui K, Meng L, Ji Y, Li J, Zhu S, Li X, Tian N, Liu D, Li L 2014 Macromolecules 47 677Google Scholar

    [18]

    Luo C, Sommer J 2016 ACS Macro Lett. 5 30Google Scholar

    [19]

    Tang X, Chen W, Li L 2019 Macromolecules 52 3575Google Scholar

    [20]

    Meyer H, Müller-Plathe F 2001 J. Chem. Phys. 115 7807Google Scholar

    [21]

    Luo C, Sommer J 2009 Comp. Phys. Comm. 180 1382Google Scholar

    [22]

    Wang S, Wang Y, Cheng S, Li X, Zhu X, Sun H 2013 Macromolecules 46 3147Google Scholar

    [23]

    Kelchner C L, Plimpton S, Hamilton J 1998 Phys. Rev. B 58 11085Google Scholar

    [24]

    Wang Z, Ju J, Yang J, Ma Z, Liu D, Cui K, Yang H, Chang J, Huang N, Li L 2016 Sci. Rep. 6 32968Google Scholar

    [25]

    Wang Y, Jiang Z, Wu Z, Men Y 2013 Macromolecules 45 518Google Scholar

    [26]

    Siviour C R, Jordan J L 2016 J. Dyn. Behav. Mater. 2 15Google Scholar

    [27]

    Lin Y, Li X, Meng L, Chen X, Li L 2018 Macromolecules 51 2690Google Scholar

    [28]

    Lin Y, Li X, Meng L, Chen X, Lü F, Zhang Q, Li L 2018 Polymer 148 79Google Scholar

  • 图 1  (a)高分子熔体剪切示意图; (b)高分子熔体在剪切场温度为T = 1.0下的σxy, RetePall演化曲线

    Fig. 1.  (a) Schematic diagram of polymer melts under shear flow; (b) evolutions of σxy, Rete and Pall for polymer melts under shear with temperature of T = 1.0.

    图 2  (a)成核原子判定方法示意图; (b)伸直链判定方法示意图; (c) PVA半晶态高分子结构晶区与无定型区S值的分布

    Fig. 2.  Schematic diagram of (a) centro-symmetry parameter and (b) stretched chain segment for PVA crystal; (c) S distribution of crystal and melt of PVA semicrystalline polymers.

    图 3  不同应变下PVA熔体的${\phi _{\rm{c}}}$, d tt, VS随时间的演化过程 (a) γ = 0; (b) γ = 1; (c) γ = 1.5; (d) γ = 2; (e) γ = 4; (f) γ = 8

    Fig. 3.  Evolutions of ${\phi _{\rm{c}}}$, d tt, V and S of nucleation atoms under different stains: (a) γ = 0; (b) γ = 1; (c) γ = 1.5; (d) γ = 2; (e) γ = 4; (f) γ = 8.

    图 4  (a)半晶态高分子结构中无定型对应的链结构分类模型; (b), (c) PVA半晶态高分子结构中晶体和无定型的原子结构

    Fig. 4.  (a) Schematic diagram of crystalline and amorphous chain structure for the semicrystalline polymers; (b) and (c) atomic structure of crystal and melt of PVA semicrystalline polymers.

    图 5  (a)不同剪切应下PVA半晶态高分子对应的${\phi _{\rm{c}}}$、晶体取向参数Pc和无定型结构取向参数Pa; (b)不同剪切应变下PVA半晶态高分子无定型链结构数目的演化

    Fig. 5.  (a) ${\phi _{\rm{c}}}$, crystalline order parameter Pc, and amorphous order parameter Pa for PVA semicrystalline polymers with different shear strains; (b) the evolution of the numbers of amorphous chains for PVA semicrystalline polymers with different shear strains.

    图 6  不同预取向半晶态高分子结构在恒定速率为$1 \times {10^{{\rm{ - }}5}}{\tau ^{ - 1}}$拉伸场下对应的应力-应变曲线

    Fig. 6.  Stress-strain curves of PVA semicrystalline polymer with different orientation degree under the stretched rate of $1 \times {10^{{\rm{ - }}5}}{\tau ^{ - 1}}$.

    图 7  γ = 6时对应的单链构象随着应变ε的演化过程

    Fig. 7.  Structural evolution of single PVA chain as a function of strain ε when γ = 6.

    Baidu
  • [1]

    Li L, de Jeu W 2005 Adv. Polym. Sci. 181 75

    [2]

    Liu D, Cui K, Huang N, Wang Z, Li L 2015 Sci. China Chem. 58 1570Google Scholar

    [3]

    Stephanou P S, Tsimouri I C, Mavrantzas V G 2016 Macromolecules 49 3161Google Scholar

    [4]

    Luo C, Kröger M, Sommer J U 2016 Macromolecules 49 9017Google Scholar

    [5]

    Luo C, Kröger M, Sommer J U 2017 Polymer 109 71Google Scholar

    [6]

    Tang X, Yang J, Xu T, Tian F, Xie C, Li L 2017 Phys. Rev. Mate. 1 073401

    [7]

    Yang J, Tang X, Wang Z, Xu T, Tian F, Ji Y, Li L 2017 J. Chem. Phys. 146 014901Google Scholar

    [8]

    Tang X, Yang J, Tian F, Xu T, Xie C, Chen W, Li L 2018 J. Chem. Phys. 149 224901Google Scholar

    [9]

    Yamamoto T 2014 Macromolecules 47 3192Google Scholar

    [10]

    Baig C, Edwards B J 2010 Europhys. Lett. 89 36003Google Scholar

    [11]

    Yang J S, Yang C, Wang M, Chen B, Ma X 2011 Phys. Chem. Chem. Phys. 13 15476Google Scholar

    [12]

    Yang J S, Huang D H, Cao Q, Li Q, Wang L, Wang F 2013 Chin. Phys. B 22 098101Google Scholar

    [13]

    杨俊升, 黄多辉 2019 68 138301Google Scholar

    Yang J S, Huang D H 2019 Acta Phys. Sin. 68 138301Google Scholar

    [14]

    杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国 2017 66 227101Google Scholar

    Yang W L, Han J S, Wang Y, Lin J Q, He G Q, Sun H G 2017 Acta Phys. Sin. 66 227101Google Scholar

    [15]

    潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红 2019 68 176801Google Scholar

    Pan D, Liu C X, Zhang Z Y, Gao Y J, Hao X H 2019 Acta Phys. Sin. 68 176801Google Scholar

    [16]

    Cui K, Ma Z, Wang Z, Ji Y, Liu D, Huang N, Chen L, Zhang W, Li L 2015 Macromolecules 48 5276Google Scholar

    [17]

    Cui K, Meng L, Ji Y, Li J, Zhu S, Li X, Tian N, Liu D, Li L 2014 Macromolecules 47 677Google Scholar

    [18]

    Luo C, Sommer J 2016 ACS Macro Lett. 5 30Google Scholar

    [19]

    Tang X, Chen W, Li L 2019 Macromolecules 52 3575Google Scholar

    [20]

    Meyer H, Müller-Plathe F 2001 J. Chem. Phys. 115 7807Google Scholar

    [21]

    Luo C, Sommer J 2009 Comp. Phys. Comm. 180 1382Google Scholar

    [22]

    Wang S, Wang Y, Cheng S, Li X, Zhu X, Sun H 2013 Macromolecules 46 3147Google Scholar

    [23]

    Kelchner C L, Plimpton S, Hamilton J 1998 Phys. Rev. B 58 11085Google Scholar

    [24]

    Wang Z, Ju J, Yang J, Ma Z, Liu D, Cui K, Yang H, Chang J, Huang N, Li L 2016 Sci. Rep. 6 32968Google Scholar

    [25]

    Wang Y, Jiang Z, Wu Z, Men Y 2013 Macromolecules 45 518Google Scholar

    [26]

    Siviour C R, Jordan J L 2016 J. Dyn. Behav. Mater. 2 15Google Scholar

    [27]

    Lin Y, Li X, Meng L, Chen X, Li L 2018 Macromolecules 51 2690Google Scholar

    [28]

    Lin Y, Li X, Meng L, Chen X, Lü F, Zhang Q, Li L 2018 Polymer 148 79Google Scholar

  • [1] 杨静, 韩晓静, 刘冬雪, 石标, 王鹏阳, 许盛之, 赵颖, 张晓丹. 丙胺盐酸盐辅助结合气淬法制备高效宽带隙钙钛矿太阳电池.  , 2024, 73(15): 158401. doi: 10.7498/aps.73.20240561
    [2] 白刚, 韩宇航, 高存法. (111)取向无铅K0.5Na0.5NbO3外延薄膜的相变和电卡效应: 外应力与错配应变效应.  , 2022, 71(9): 097701. doi: 10.7498/aps.71.20220234
    [3] 王路, 王菊, 李娜娜, 梁策, 王文丹, 何竹, 刘秀茹. 快速加压引起的硒熔体结晶行.  , 2021, 70(15): 156201. doi: 10.7498/aps.70.20210253
    [4] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析.  , 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [5] 贝帮坤, 王华光, 张泽新. 有限尺寸胶体体系的二维结晶.  , 2019, 68(10): 106401. doi: 10.7498/aps.68.20190304
    [6] 杨俊升, 黄多辉. 环状聚合物及其对应的线性链熔体在启动剪切场下流变特性的分子动力学模拟研究.  , 2019, 68(13): 138301. doi: 10.7498/aps.68.20190403
    [7] 贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军. 聚乙烯醇水溶液二维定向凝固的微观组织演化.  , 2017, 66(19): 196402. doi: 10.7498/aps.66.196402
    [8] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能.  , 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [9] 王理林, 王志军, 林鑫, 王锦程, 黄卫东. 冷却速率对温敏聚N-异丙基丙烯酰胺胶体结晶过程的影响.  , 2016, 65(10): 106403. doi: 10.7498/aps.65.106403
    [10] 严大东, 张兴华. 聚合物结晶理论进展.  , 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [11] 陶为俊, 浣石. 沿时间逐步求解应力的拉格朗日分析方法研究.  , 2012, 61(20): 200703. doi: 10.7498/aps.61.200703
    [12] 徐树杰, 师春生, 赵乃勤, 刘恩佐. 热加工过程中动态再结晶现象的多相场研究.  , 2012, 61(11): 116101. doi: 10.7498/aps.61.116101
    [13] 王其富, 王小霞, 罗积润, 赵青兰. 颗粒状纳米碳酸钡锶钙的研制.  , 2010, 59(10): 7383-7389. doi: 10.7498/aps.59.7383
    [14] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测.  , 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [15] 刘艳松, 陈 铠, 乔 峰, 黄信凡, 韩培高, 钱 波, 马忠元, 李 伟, 徐 骏, 陈坤基. 尺寸可控的纳米硅的生长模型和实验验证.  , 2006, 55(10): 5403-5408. doi: 10.7498/aps.55.5403
    [16] 王庆学. 异质结构的应变和应力分布模型研究.  , 2005, 54(8): 3757-3763. doi: 10.7498/aps.54.3757
    [17] 黄 文, 曾慧中, 张 鹰, 蒋书文, 魏贤华, 李言荣. 不同晶化工艺对非晶PZT纳米薄膜形核取向生长机理的影响.  , 2005, 54(3): 1334-1340. doi: 10.7498/aps.54.1334
    [18] 赵辉, 董宝中, 郭梅芳, 王良诗, 乔金梁. 小角x射线散射结晶聚合物结构的研究.  , 2002, 51(12): 2887-2891. doi: 10.7498/aps.51.2887
    [19] 韩甫田, 郭立平, 刘平安, 唐振方, 施其宏. 半结晶聚酯(PET)的二相共存结构的表征.  , 2001, 50(6): 1132-1138. doi: 10.7498/aps.50.1132
    [20] 李树尘, 陈梦谪, 柯俊. 冷轧取向硅钢二次再结晶过程的能量分析.  , 1990, 39(4): 672-676. doi: 10.7498/aps.39.672
计量
  • 文章访问数:  9624
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-04
  • 修回日期:  2019-11-28
  • 刊出日期:  2020-02-05

/

返回文章
返回
Baidu
map