-
开展了在513, 523, 533 K温度下硒熔体的快速压致凝固实验, 分析了不同保温时间即0, 30, 60 min对凝固晶体尺寸及形貌的影响. 发现随着保温时间的延长, 晶粒不断发生聚集生长, 晶粒尺寸变大. 通过与相同温度、压力条件下非晶硒、超细晶体硒粉等温结晶的样品对比, 否定了快压凝固结构为非晶硒、非晶硒晶化为晶体硒的可能性, 认为硒熔体快压凝固的结构为晶体硒, 在保温过程中晶体颗粒在晶界处可以发生聚集生长. 分析发现熔体快速压致凝固法不能得到非晶硒的原因在于实验条件下非晶硒为不稳定相, 非晶硒的晶化温度随压力关系在2 GPa前后表现出不同的变化趋势, 推测压力对过冷液态硒的微观结构有影响.Amorphous selenium (Se) can be easily prepared by quenching the melt, which indicates that the Se possesses the good glass-forming ability. However, crystallization occurs after rapidly compressing the melt within about 20 ms. In this work, we investigate the mechanism of rapid compression-induced crystallization from Se melt. Compressing Se melt experiments are carried out at the following temperatures: 513, 523 and 533 K. The melt is rapidly compressed under 2.4 GPa for about 20 ms. Different holding times, i.e. 0, 30, 60 min after solidification are adopted. The samples are quenched to room temperature and then unloaded to ambient pressure. The X-ray diffraction analysis of the recovered sample indicates that the crystallization product is the t-Se. It is found that with the prolongation of holding time, the grain size increases due to the continuous aggregation growth of crystal grains. By comparing with the isothermal crystallization products of amorphous Se and ultrafine Se powder, it is suggested that the rapid compression-induced solidification product should be t-Se crystalline. The speculation that the solidification product is amorphous Se and it crystallizes in the cooling process does not hold true. The amorphous Se cannot be prepared through the rapid compression process on a millisecond scale. It is related to the thermal stability of amorphous Se under high pressure. It is reported that the dependence of crystallization temperature Tx on pressure i.e. dTx/dP for amorphous Se is about 40–50 K/GPa in a range of 0.1 MPa–1 GPa. However, the Tx of amorphous Se is almost constant in a range of 2–6 GPa. It means that the thermal stability of amorphous Se against crystallization does not increase with increasing pressure after 2 GPa. In this work, the temperature of 513–533 K in the experiments is higher than the Tx of amorphous Se. Therefore, the t-Se crystal is the stable phase and amorphous Se is unstable. The Se melt tends to crystallize in the supercooled liquid state after rapid compression. It is interesting to investigate the mechanism of dTx/dP curve discontinuous change at around 2 GPa in the future. Both the Se melt after rapid compression and the amorphous Se before crystallization are in supercooled liquid state. We speculate that high pressure may result in the microstructure transition in supercooled liquid state Se.
-
Keywords:
- high pressure /
- selenium /
- crystallization /
- compression-induced solidification
[1] Huang H Y, Abbaszadeh S 2020 IEEE Sens. J. 20 1694Google Scholar
[2] Matsuura M, Suzuki K 1979 J. Mater. Sci. 14 395Google Scholar
[3] Fan G J, Guo F Q, Hu Z Q, Quan M X, Lu K 1997 Phys. Rev. B 55 11010Google Scholar
[4] 邵胜子, 陈泽祥 2011 电子元器件应用 8 28Google Scholar
Shao Z S, Chen Z X 2011 Electr. Comp. Devic. Appl. 8 28Google Scholar
[5] Sun H, Zhu X H, Yang D Y, Wangyang P H, Gao X Y, Tian H B 2016 Mater. Lett. 183 94Google Scholar
[6] Singh A K, Kennedy G C 1975 J. Appl. Phys. 46 3861Google Scholar
[7] Mohan M, Singh A K 1993 Philos. Mag. B 67 705Google Scholar
[8] Zhang H Y, Hu Z Q, Lu K 1995 Nanostruct. Mater. 5 41Google Scholar
[9] Tonchev D, Mani H, Belev G, Kostova I, Kasap S 2014 18th International School on Condensed Matter Physics-Challenges of Nanoscale Science-Theory, Materials, Applications Varna, Bulgaria, September 1−6, 2014 p012007
[10] Abbaszadeh S, Rom K, Bubon O 2012 J. Non-Cryst. Solids 358 2389Google Scholar
[11] Yu T Y, Pan F M, Chang C Y, Lin J S, Huang W H 2015 J. Appl. Phys. 118 044509Google Scholar
[12] Ohkawa Y J, Miyakawa K, Matsubara T, Kikuchi K, Tanioka K, Kubota M, Egami N, Kobayashi A 2011 Phys. Status Solidi C 8 2818Google Scholar
[13] Mao H K, Chen B, Chen J, Li K, Lin J F, Yang W, Zheng H 2016 Matter. Radiat. Extremes 1 59Google Scholar
[14] Degtyareva O, Hernández E R, Serrano J, Somayazulu M, Mao H K, Gregoryanz E, Hemley R J 2007 J. Chem. Phys. 126 084503Google Scholar
[15] Li X, Huang X L, Wang X, Liu M K, Wu G, Huang Y P, He X, Li F F, Zhou Q, Liu B B, Cui T 2018 Phys. Chem. Chem. Phys. 20 6116Google Scholar
[16] Bridgman P W 1941 Phys. Rev. 60 351Google Scholar
[17] McCann D R, Cartz L 1972 J. Chem. Phys. 56 2552Google Scholar
[18] Liu H Z, Wang L H, Xiao X H, Carlo F D, Feng J, Mao H K, Hemley R J 2008 PNAS 105 13229Google Scholar
[19] He Z, Wang Z G, Zhu H Y, Liu X R, Peng J P, Hong S M 2014 Appl. Phys. Lett. 105 011901Google Scholar
[20] Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905Google Scholar
[21] 刘秀茹, 王明友, 张豆豆, 张晨然, 何竹, 陈丽英, 沈如, 洪时明 2014 高压 28 385Google Scholar
Liu X R, Wang M Y, Zhang D D, Zhang C R, He Z, Chen L Y, Shen R, Hong S M 2014 Chin. J. High Pressure Phys. 28 385Google Scholar
[22] Hu Y, Su L, Liu X R, Sun Z Y, Lv S J, Yuan C S, Jia R, Shen R, Hong S M 2010 Chin. Phys. Lett. 27 038101Google Scholar
[23] He Z, Liu X R, Zhang D D, Zhang L J, Hong S M 2014 Solid State Commun. 197 30Google Scholar
[24] Ye F, Lu K 1998 Acta Mater. 46 5965Google Scholar
[25] Dai R C, Luo L B, Zhang Z M, Ding Z J 2011 Mater. Res. Bull. 46 350Google Scholar
[26] Akahama Y, Kobayashi M, Kawamura M H 1993 Phys. Rev. B 47 20Google Scholar
-
图 5 (a) 非晶硒样品的XRD图谱, 包括常压制备的非晶硒XRD图谱、非晶硒常温快压后回收样品的XRD图谱; (b)在513, 523, 533 K温度下非晶硒等温结晶样品的XRD图谱
Fig. 5. (a) XRD patterns of amorphous selenium (a-Se) sample and the compressed a-Se which is recovered after rapidly compressed at room temperature; (b) XRD patterns of Sample I, Sample II, Sample III, which are the isothermal crystallization products of a-Se at 513, 523, and 533 K, respectively.
图 9 Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III衍射谱的精修结果, 图中黑色点表示衍射实验数据, 红色曲线为计算的衍射峰, 蓝色曲线为实验数据与计算数据的偏差, 紫色的短线表示
t-Se相衍射峰的位置 Fig. 9. XRD patterns of Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III. Symbols: experimental data (black dots), calculated diffraction pattern (red line), residuals of the refinement (blue solid line), and peak positions of t-Se (purple vertical bar).
图 10 非晶硒的晶化起始温度Tx和晶化产物t-Se的熔化温度Tm随压力的变化关系, 其中, Ye和Lu[24]的数据测量实验的升温速率为8.7 K/min, He等[23]的数据测量实验的升温速率为8.6 K/min, 内插图清楚地显示了400—560 K温度范围内的关系曲线
Fig. 10. Onset crystallization temperature (Tx) of a-Se and the melting temperature (Tm) of a-Se crystallization product i.e. t-Se as a function of the applied pressure. Data from Ye and Lu[24] was measured under the heating rate of 8.7 K/min. Data from He et al.[23] was measured under the heating rate of 8.6 K/min. The pressure and temperature conditions in this work are shown. The inset figure displays clearly the data in the range of 400–560 K.
表 1 Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III的XRD谱中部分衍射晶面的信息, 包括衍射峰的相对强度I、晶面间距d、半峰宽FWHM
Table 1. Diffraction peaks parameters of Sample A1, Sample B1, Sample C1, Sample I, Sample II, Sample III, including the relative peak intensity (I), interplanar distance (d) and peak width at half-height (FWHM).
(100) (101) (110) (012) (111) I/% d/nm FWHM/(°) I/% d/nm FWHM/(°) I/% d/nm FWHM/(°) I/% d/nm FWHM/(°) I/% d/nm FWHM/(°) μm powder 43.7 3.795 0.446 100 3.013 0.353 13.9 2.187 0.593 30.4 2.074 0.453 19.2 2.002 0.592 Sample A1 25.3 3.793 0.316 100 3.010 0.187 8.6 2.186 0.474 15.3 2.077 0.292 13.4 2.001 0.395 Sample B1 24.8 3.779 0.251 100 3.004 0.166 7.7 2.182 0.301 24.6 2.072 0.215 9.5 1.997 0.323 Sample C1 34.7 3.785 0.231 100 3.010 0.182 10.5 2.184 0.292 38.5 2.075 0.243 13.5 1.999 0.323 Sample I 39.5 3.785 0.290 100 3.010 0.218 11.6 2.185 0.447 20.7 2.077 0.349 14.1 2.000 0.435 Sample II 51.7 3.789 0.324 100 3.007 0.238 10.4 2.185 0.521 19.7 2.077 0.349 12.2 1.999 0.489 Sample III 33.2 3.789 0.326 100 3.007 0.244 10.0 2.183 0.500 24.4 2.078 0.376 13.3 2.000 0.487 -
[1] Huang H Y, Abbaszadeh S 2020 IEEE Sens. J. 20 1694Google Scholar
[2] Matsuura M, Suzuki K 1979 J. Mater. Sci. 14 395Google Scholar
[3] Fan G J, Guo F Q, Hu Z Q, Quan M X, Lu K 1997 Phys. Rev. B 55 11010Google Scholar
[4] 邵胜子, 陈泽祥 2011 电子元器件应用 8 28Google Scholar
Shao Z S, Chen Z X 2011 Electr. Comp. Devic. Appl. 8 28Google Scholar
[5] Sun H, Zhu X H, Yang D Y, Wangyang P H, Gao X Y, Tian H B 2016 Mater. Lett. 183 94Google Scholar
[6] Singh A K, Kennedy G C 1975 J. Appl. Phys. 46 3861Google Scholar
[7] Mohan M, Singh A K 1993 Philos. Mag. B 67 705Google Scholar
[8] Zhang H Y, Hu Z Q, Lu K 1995 Nanostruct. Mater. 5 41Google Scholar
[9] Tonchev D, Mani H, Belev G, Kostova I, Kasap S 2014 18th International School on Condensed Matter Physics-Challenges of Nanoscale Science-Theory, Materials, Applications Varna, Bulgaria, September 1−6, 2014 p012007
[10] Abbaszadeh S, Rom K, Bubon O 2012 J. Non-Cryst. Solids 358 2389Google Scholar
[11] Yu T Y, Pan F M, Chang C Y, Lin J S, Huang W H 2015 J. Appl. Phys. 118 044509Google Scholar
[12] Ohkawa Y J, Miyakawa K, Matsubara T, Kikuchi K, Tanioka K, Kubota M, Egami N, Kobayashi A 2011 Phys. Status Solidi C 8 2818Google Scholar
[13] Mao H K, Chen B, Chen J, Li K, Lin J F, Yang W, Zheng H 2016 Matter. Radiat. Extremes 1 59Google Scholar
[14] Degtyareva O, Hernández E R, Serrano J, Somayazulu M, Mao H K, Gregoryanz E, Hemley R J 2007 J. Chem. Phys. 126 084503Google Scholar
[15] Li X, Huang X L, Wang X, Liu M K, Wu G, Huang Y P, He X, Li F F, Zhou Q, Liu B B, Cui T 2018 Phys. Chem. Chem. Phys. 20 6116Google Scholar
[16] Bridgman P W 1941 Phys. Rev. 60 351Google Scholar
[17] McCann D R, Cartz L 1972 J. Chem. Phys. 56 2552Google Scholar
[18] Liu H Z, Wang L H, Xiao X H, Carlo F D, Feng J, Mao H K, Hemley R J 2008 PNAS 105 13229Google Scholar
[19] He Z, Wang Z G, Zhu H Y, Liu X R, Peng J P, Hong S M 2014 Appl. Phys. Lett. 105 011901Google Scholar
[20] Hong S M, Chen L Y, Liu X R, Wu X H, Su L 2005 Rev. Sci. Instrum. 76 053905Google Scholar
[21] 刘秀茹, 王明友, 张豆豆, 张晨然, 何竹, 陈丽英, 沈如, 洪时明 2014 高压 28 385Google Scholar
Liu X R, Wang M Y, Zhang D D, Zhang C R, He Z, Chen L Y, Shen R, Hong S M 2014 Chin. J. High Pressure Phys. 28 385Google Scholar
[22] Hu Y, Su L, Liu X R, Sun Z Y, Lv S J, Yuan C S, Jia R, Shen R, Hong S M 2010 Chin. Phys. Lett. 27 038101Google Scholar
[23] He Z, Liu X R, Zhang D D, Zhang L J, Hong S M 2014 Solid State Commun. 197 30Google Scholar
[24] Ye F, Lu K 1998 Acta Mater. 46 5965Google Scholar
[25] Dai R C, Luo L B, Zhang Z M, Ding Z J 2011 Mater. Res. Bull. 46 350Google Scholar
[26] Akahama Y, Kobayashi M, Kawamura M H 1993 Phys. Rev. B 47 20Google Scholar
计量
- 文章访问数: 5240
- PDF下载量: 67
- 被引次数: 0