Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of defects induced by plasma-bombarded monolayer WS2 on optical properties of bound excitons

Liu Hai-Yang Fan Xiao-Yue Fan Hao-Jie Li Yang-Yang Tang Tian-Hong Wang Gang

Citation:

Influence of defects induced by plasma-bombarded monolayer WS2 on optical properties of bound excitons

Liu Hai-Yang, Fan Xiao-Yue, Fan Hao-Jie, Li Yang-Yang, Tang Tian-Hong, Wang Gang
PDF
HTML
Get Citation
  • Monolayer transition metal dichalcogenides (TMDCs) exhibit exceptional properties including atomic-scale thickness, direct bandgap, and strong spin-orbit coupling, which make them have great potential applications in spintronics, optoelectronics, and other fields. Usually, materials contain various structural defects, which are either formed during preparation and growth or induced by subsequent treatments. These defects can significantly change their physicochemical properties. Consequently, controlling and comprehending defects is an important approach to adjusting the properties of these materials.Herein, we use Ar+ plasma to bombard monolayer WS2, which is exfoliated mechanically, thereby introducing defects whose density is controlled by changing the bombardment duration. The photoluminescence (PL) and Raman spectroscopic measurements at different temperatures and power values are utilized to investigate the optical properties of the defects. Furthermore, time-resolved photoluminescence is employed to unveil the dynamic behaviors of free and trapped excitons.The bombardment can introduce different types of defects into typical two-dimensional (2D) TMDCs such as MoS2 and WS2. Single sulfur vacancies are frequently generated, while other defects like double sulfur vacancies or metal atom vacancies can also occur. Exciton effects dominate the optical properties of monolayer TMDCs due to reduced screening and large effective mass. At low temperatures, bound exciton emissions arise from trapped states. Our measurements reveal two types of defect-bound excitons from the PL spectra at around 1.85 eV (XB1) and 1.55 eV (XB2). Meanwhile, the Raman peaks of the samples before and after treatment exhibit no obvious changes, indicating that the lattice structure remaines unchanged. After the Ar+ bombardment, the intensity of the free neutral exciton significantly decreases to 1/6 of untreated WS2, owing to the free exciton population and the increased non-radiative centers. The dynamic processes of these two bound excitons are considerably slower than the neutral exciton’s, showing the typical dynamic behavior of defect-bound excitons. Furthermore, comparison between the PL under vacuum condition and the PL under atmospheric condition shows that the intensities of the two bound excitons exhibit opposing behaviors. In an atmospheric environment, neutral excitons and bound exciton XB1 possess higher intensities. In the vacuum, the strength of neutral exciton and XB1 decrease quickly, while the intensity of deep-level bound exciton XB2 increases.In summary, we observe two bound exciton states arising from specific vacancy states in monolayer WS2 after Ar+ bombardment. Their energy values are 200 meV and 500 meV lower than those of the neutral exciton, with a splitting energy value being about 300 meV. The detailed evolution of the relative spectral weight with temperature and excitation power are presented. This work provides insights into the generation, control, and characteristic spectra of defects in 2D materials.
      Corresponding author: Wang Gang, gw@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074033) and the Beijing Institute of Technology Science and Innovation Cultivation Program, China (Grant No. 2022CX01007).
    [1]

    Liang Q J, Zhang Q, Zhao X X, Liu M Z, Wee A T S 2021 ACS Nano 15 2165Google Scholar

    [2]

    Karaiskaj D, Thewalt M L, Ruf T, Cardona M, Pohl H J, Deviatych G G, Sennikov P G, Riemann H 2001 Phys. Rev. Lett. 86 6010Google Scholar

    [3]

    Skolnick M S, Tu C W, Harris T D 1986 Phys. Rev. B Condens. Matter 33 8468Google Scholar

    [4]

    Look D C, Farlow G C, Reunchan P, Limpijumnong S, Zhang S B, Nordlund K 2005 Phys. Rev. Lett. 95 225502Google Scholar

    [5]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [6]

    Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan B, Reichman D R, Hybertsen M S, Heinz T F 2014 Phys. Rev. Lett. 113 076802Google Scholar

    [7]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [8]

    Shi W, Lin M L, Tan Q H, Qiao X F, Zhang J, Tan P H 2016 2D Mater. 3 2757Google Scholar

    [9]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [10]

    Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J B, Grossman J C, Wu J Q 2013 Sci. Rep. 3 2657Google Scholar

    [11]

    Rhodes D, Chae S H, Ribeiro-Palau R, Hone J 2019 Nat. Mater. 18 541Google Scholar

    [12]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [13]

    Pisoni R, Kormanyos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoglu A, Burkard G, Ihn T, Ensslin K 2018 Phys. Rev. Lett. 121 247701Google Scholar

    [14]

    Tanoh A O A, Alexander-Webber J, Xiao J, Delport G, Williams C A, Bretscher H, Gauriot N, Allardice J, Pandya R, Fan Y, Li Z, Vignolini S, Stranks S D, Hofmann S, Rao A 2019 Nano Lett. 19 6299Google Scholar

    [15]

    Kim H, Lien D H, Amani M, Ager J W, Javey A 2017 ACS Nano 11 5179Google Scholar

    [16]

    Chuang H J, Chamlagain B, Koehler M, Perera M M, Yan J, Mandrus D, Tomanek D, Zhou Z 2016 Nano Lett. 16 1896Google Scholar

    [17]

    Xie Y, Wu E X, Hu R X, Qian S B, Feng Z H, Chen X J, Zhang H, Xu L Y, Hu X D, Liu J, Zhang D H 2018 Nanoscale 10 12436Google Scholar

    [18]

    Tosun M, Chan L, Amani M, Roy T, Ahn G H, Taheri P, Carraro C, Ager J W, Maboudian R, Javey A 2016 ACS Nano 10 6853Google Scholar

    [19]

    Meng J L, Wei Z, Tang J, Zhao Y, Wang Q, Tian J, Yang R, Zhang G, Shi D 2020 Nanotechnology 31 235710Google Scholar

    [20]

    Shaik A B D, Palla P 2021 Sci. Rep. 11 12285Google Scholar

    [21]

    Palacios-Berraquero C, Barbone M, Kara D M, Chen X, Goykhman I, Yoon D, Ott A K, Beitner J, Watanabe K, Taniguchi T, Ferrari A C, Atature M 2016 Nat. Commun. 7 12978Google Scholar

    [22]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [23]

    Moody G, Tran K, Lu X, Autry T, Fraser J M, Mirin R P, Yang L, Li X, Silverman K L 2018 Phys. Rev. Lett. 121 057403Google Scholar

    [24]

    Refaely-Abramson S, Qiu D Y, Louie S G, Neaton J B 2018 Phys. Rev. Lett. 121 167402Google Scholar

    [25]

    Mujeeb F, Chakrabarti P, Mahamiya V, Shukla A, Dhar S 2023 Phys. Rev. B 107 115429Google Scholar

    [26]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [27]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [28]

    Zhou M F, Wang W H, Lu J P, Ni Z H 2021 Nano Res. 14 29Google Scholar

    [29]

    Vaquero D, Clericò V, Salvador-Sánchez J, Martín-Ramos A, Díaz E, Domínguez-Adame F, Meziani Y M, Diez E, Quereda J 2020 Commun. Phys. 3 194Google Scholar

    [30]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474Google Scholar

    [31]

    Zhang X X, You Y, Zhao S Y, Heinz T F 2015 Phys. Rev. Lett. 115 257403Google Scholar

    [32]

    Tang Y H, Mak K F, Shan J 2019 Nat. Commun. 10 4047Google Scholar

    [33]

    You Y, Zhang X X, Berkelbach T C, Hybertsen M S, Reichman D R, Heinz T F 2015 Nat. Phys. 11 477Google Scholar

    [34]

    Ye Z, Waldecker L, Ma E Y, Rhodes D, Antony A, Kim B, Zhang X X, Deng M, Jiang Y, Lu Z, Smirnov D, Watanabe K, Taniguchi T, Hone J, Heinz T F 2018 Nat. Commun. 9 3718Google Scholar

    [35]

    Zhang X X, Cao T, Lu Z, Lin Y C, Zhang F, Wang Y, Li Z, Hone J C, Robinson J A, Smirnov D, Louie S G, Heinz T F 2017 Nat. Nanotechnol. 12 883Google Scholar

    [36]

    Li Y, Ludwig J, Low T, Chernikov A, Cui X, Arefe G, Kim Y D, van der Zande A M, Rigosi A, Hill H M, Kim S H, Hone J, Li Z, Smirnov D, Heinz T F 2014 Phys. Rev. Lett. 113 266804Google Scholar

    [37]

    Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [38]

    Amani M, Taheri P, Addou R, Ahn G H, Kiriya D, Lien D H, Ager J W, 3rd, Wallace R M, Javey A 2016 Nano Lett. 16 2786Google Scholar

    [39]

    Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503Google Scholar

    [40]

    Zhao G Y, Deng H, Tyree N, Guy M, Lisfi A, Peng Q, Yan J A, Wang C, Lan Y 2019 Appl. Sci. 9 678Google Scholar

    [41]

    Chee S S, Lee W J, Jo Y R, Cho M K, Chun D, Baik H, Kim B J, Yoon M H, Lee K, Ham M H 2020 Adv. Funct. Mater. 30 1908147Google Scholar

    [42]

    Li Y L, Liu W, Wang Y K, Xue Z H, Leng Y C, Hu A Q, Yang H, Tan P H, Liu Y Q, Misawa H, Sun Q, Gao Y N, Hu X Y, Gong Q H 2020 Nano Lett. 20 3747Google Scholar

    [43]

    Wu Z T, Zhao W W, Jiang J, Zheng T, You Y M, Lu J P, Ni Z H 2017 J. Phys. Chem. C 121 12294Google Scholar

    [44]

    Zheng Y J, Chen Y, Huang Y L, Gogoi P K, Li M Y, Li L J, Trevisanutto P E, Wang Q, Pennycook S J, Wee A T S, Quek S Y 2019 ACS Nano 13 6050Google Scholar

    [45]

    Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C T, Barja S, Koch R J, Ogletree D F, Aloni S, Schwartzberg A M, Neaton J B, Louie S G, Weber-Bargioni A 2019 Phys. Rev. Lett. 123 076801Google Scholar

    [46]

    Carozo V, Wang Y, Fujisawa K, Carvalho B R, McCreary A, Feng S, Lin Z, Zhou C, Perea-López N, Elías A L, Kabius B, Crespi V H, Terrones M 2017 Sci. Adv. 3 e1602813Google Scholar

    [47]

    Liu H, Wang C, Liu D M, Luo J B 2019 Nanoscale 11 7913Google Scholar

    [48]

    Liu H, Wang C, Zuo Z, Liu D M, Luo J B 2020 Adv. Mater. 32 e1906540Google Scholar

    [49]

    Greben K, Arora S, Harats M G, Bolotin K I 2020 Nano Lett. 20 2544Google Scholar

    [50]

    Zhang S, Wang C G, Li M Y, Huang D, Li L J, Ji W, Wu S 2017 Phys. Rev. Lett. 119 046101Google Scholar

    [51]

    Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lü R, Lopez-Urias F, Crespi V H, Terrones H, Terrones M 2013 Nano Lett. 13 3447Google Scholar

    [52]

    Tsai C, Li H, Park S, Park J, Han H S, Norskov J K, Zheng X, Abild-Pedersen F 2017 Nat. Commun. 8 15113Google Scholar

    [53]

    Godde T, Schmidt D, Schmutzler J, Aßmann M, Debus J, Withers F, Alexeev E M, Del Pozo-Zamudio O, Skrypka O V, Novoselov K S, Bayer M, Tartakovskii A I 2016 Phys. Rev. B 94 165301Google Scholar

    [54]

    McCreary A, Berkdemir A, Wang J, Nguyen M A, Elías A L, Perea-López N, Fujisawa K, Kabius B, Carozo V, Cullen D A, Mallouk T E, Zhu J, Terrones M 2016 J. Mater. Res. 31 931Google Scholar

    [55]

    Kim M S, Yun S J, Lee Y, Seo C, Han G H, Kim K K, Lee Y H, Kim J 2016 ACS Nano 10 2399Google Scholar

    [56]

    Feng J Y, Li Y Z, Li J X, Feng Q S, Xin W, Liu W Z, Xu H Y, Liu Y C 2022 Nano Lett. 22 3699Google Scholar

    [57]

    Xin M, Lan W Z, Wang G, Zhou Q, Gu C Z, Liu B L 2021 Appl. Phys. Lett. 119 153101Google Scholar

    [58]

    Liu H L, Yang T, Tatsumi Y, Zhang Y, Dong B J, Guo H H, Zhang Z D, Kumamoto Y, Li M Y, Li L J, Saito R, Kawata S 2018 Sci. Rep. 8 11398Google Scholar

    [59]

    Chow P K, Jacobs-Gedrim R B, Gao J, Lu T M, Yu B, Terrones H, Koratkar N 2015 ACS Nano 9 1520Google Scholar

    [60]

    Goodman A J, Willard A P, Tisdale W A 2017 Phys. Rev. B 96 121404Google Scholar

    [61]

    Berkdemir A, Gutiérrez H R, Botello-Méndez A R, Perea-López N, Elías A L, Chia C I, Wang B, Crespi V H, López-Urías F, Charlier J C, Terrones H, Terrones M 2013 Sci. Rep. 3 1755Google Scholar

    [62]

    Shang J Z, Shen X N, Cong C X, Peimyoo N, Cao B C, Eginligil M, Yu T 2015 ACS Nano 9 647Google Scholar

    [63]

    Wang G, Bouet L, Lagarde D, Vidal M, Balocchi A, Amand T, Marie X, Urbaszek B 2014 Phys. Rev. B 90 097403Google Scholar

    [64]

    Jadczak J, Kutrowska-Girzycka J, Kapuscinski P, Huang Y S, Wojs A, Bryja L 2017 Nanotechnology 28 395702Google Scholar

    [65]

    Singh A, Singh A K 2021 Phys. Rev. Mater. 5 084001Google Scholar

  • 图 1  (a)经过20 s处理的单层WS2; (b)经过30 s处理的单层WS2, 插图为处理前的单层WS2; (c)室温下, 处理前后样品的PL谱; (d)室温下, 处理前后样品的Raman谱; (e)室温下, 处理前后样品的白光反射谱; (f)室温下, 处理前后样品的PL谱, 为图(c)淡蓝色区域位置的放大

    Figure 1.  (a) Monolayer WS2 after 20 s treatment; (b) monolayer WS2 after 30 s treatment, the insets are the monolayer WS2 before treatment; (c) PL spectra of the samples before and after treatment at room temperature; (d) Raman spectra of the samples before and after treatment at room temperature; (e) reflectivities of the samples before and after treatment at room temperature; (f) PL spectra of the sample before and after treatment at room temperature, zoom-in of the spectral range marked by the blue rectangle zone in panel (c).

    图 2  (a) 77 K下未处理的单层和经过20 s, 30 s处理的单层WS2的PL谱; (b), (c)经过20 s, 30 s处理的单层WS2变温PL谱; (d)经过20 s, 30 s处理的样品XB1(XB2)发光峰强度和X0强度比值随温度的变化; (e), (f)经过20 s, 30 s处理的单层WS2的X0, XB1, XB2峰位随温度的变化

    Figure 2.  (a) PL spectra of untreated monolayer WS2 and monolayers treated for 20 s and 30 s at 77 K; (b), (c) temperature dependent PL spectra of monolayer WS2 after 20 s and 30 s treatment; (d) temperature dependent PL intensity ratio of bound excitons XB1 and XB2 over X0 of monolayers treated for 20 s and 30 s; (e), (f) temperature dependent peak energies of X0, XB1, and XB2 of monolayers treated for 20 s and 30 s.

    图 3  200 K温度下功率依赖PL结果 (a)—(c) 20 s处理样品的结果; (d)—(f) 30 s处理样品的结果; (a), (d)样品变功率PL光谱; (b), (e)样品XB1(XB2)发光峰强度和X0强度比值随功率的变化; (c), (f)样品X0, XB1, XB2发光峰强度积分随功率的变化

    Figure 3.  Power dependent PL results at 200 K: (a)–(c) Results of monolayer treated for 20 s; (d)–(f) results of monolayer treated for 30 s; (a), (d) power dependent PL spectra; (b), (e) power dependent PL intensity ratio of bound excitons XB1 and XB2 over X0; (c), (f) power dependent PL intensities of X0, XB1, XB2.

    图 4  (a) 150 K下30 s处理的样品变功率的PL; (b) 30 s处理的样品中XB1变功率的PL; (c) 30 s处理的样品中X0变功率的PL

    Figure 4.  (a) Power dependent PL spectra of the sample treated for 30 s at 150 K; (b) power dependent PL spectra of XB1 in the sample treated for 30 s; (c) power dependent PL spectra of X0 in the sample treated for 30 s.

    图 5  20 s和30 s处理样品的时间分辨光谱 (a) 77 K; (b) 300 K

    Figure 5.  Time-resolved PL of monolayer treated for 20 s and 30 s: (a) 77 K; (b) 300 K.

    图 6  室温下, 大气环境和真空下单层WS2的PL (a)未处理的单层; (b) 20 s处理的单层; (c) 30 s处理的单层

    Figure 6.  PL of monolayer WS2 under atmosphere and vacuum conditions at room temperature: (a) Results of untreated monolayer WS2; (b) results of monolayer WS2 treated for 20 s; (c) results of monolayer WS2 treated for 30 s.

    Baidu
  • [1]

    Liang Q J, Zhang Q, Zhao X X, Liu M Z, Wee A T S 2021 ACS Nano 15 2165Google Scholar

    [2]

    Karaiskaj D, Thewalt M L, Ruf T, Cardona M, Pohl H J, Deviatych G G, Sennikov P G, Riemann H 2001 Phys. Rev. Lett. 86 6010Google Scholar

    [3]

    Skolnick M S, Tu C W, Harris T D 1986 Phys. Rev. B Condens. Matter 33 8468Google Scholar

    [4]

    Look D C, Farlow G C, Reunchan P, Limpijumnong S, Zhang S B, Nordlund K 2005 Phys. Rev. Lett. 95 225502Google Scholar

    [5]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [6]

    Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan B, Reichman D R, Hybertsen M S, Heinz T F 2014 Phys. Rev. Lett. 113 076802Google Scholar

    [7]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [8]

    Shi W, Lin M L, Tan Q H, Qiao X F, Zhang J, Tan P H 2016 2D Mater. 3 2757Google Scholar

    [9]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [10]

    Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J B, Grossman J C, Wu J Q 2013 Sci. Rep. 3 2657Google Scholar

    [11]

    Rhodes D, Chae S H, Ribeiro-Palau R, Hone J 2019 Nat. Mater. 18 541Google Scholar

    [12]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [13]

    Pisoni R, Kormanyos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoglu A, Burkard G, Ihn T, Ensslin K 2018 Phys. Rev. Lett. 121 247701Google Scholar

    [14]

    Tanoh A O A, Alexander-Webber J, Xiao J, Delport G, Williams C A, Bretscher H, Gauriot N, Allardice J, Pandya R, Fan Y, Li Z, Vignolini S, Stranks S D, Hofmann S, Rao A 2019 Nano Lett. 19 6299Google Scholar

    [15]

    Kim H, Lien D H, Amani M, Ager J W, Javey A 2017 ACS Nano 11 5179Google Scholar

    [16]

    Chuang H J, Chamlagain B, Koehler M, Perera M M, Yan J, Mandrus D, Tomanek D, Zhou Z 2016 Nano Lett. 16 1896Google Scholar

    [17]

    Xie Y, Wu E X, Hu R X, Qian S B, Feng Z H, Chen X J, Zhang H, Xu L Y, Hu X D, Liu J, Zhang D H 2018 Nanoscale 10 12436Google Scholar

    [18]

    Tosun M, Chan L, Amani M, Roy T, Ahn G H, Taheri P, Carraro C, Ager J W, Maboudian R, Javey A 2016 ACS Nano 10 6853Google Scholar

    [19]

    Meng J L, Wei Z, Tang J, Zhao Y, Wang Q, Tian J, Yang R, Zhang G, Shi D 2020 Nanotechnology 31 235710Google Scholar

    [20]

    Shaik A B D, Palla P 2021 Sci. Rep. 11 12285Google Scholar

    [21]

    Palacios-Berraquero C, Barbone M, Kara D M, Chen X, Goykhman I, Yoon D, Ott A K, Beitner J, Watanabe K, Taniguchi T, Ferrari A C, Atature M 2016 Nat. Commun. 7 12978Google Scholar

    [22]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [23]

    Moody G, Tran K, Lu X, Autry T, Fraser J M, Mirin R P, Yang L, Li X, Silverman K L 2018 Phys. Rev. Lett. 121 057403Google Scholar

    [24]

    Refaely-Abramson S, Qiu D Y, Louie S G, Neaton J B 2018 Phys. Rev. Lett. 121 167402Google Scholar

    [25]

    Mujeeb F, Chakrabarti P, Mahamiya V, Shukla A, Dhar S 2023 Phys. Rev. B 107 115429Google Scholar

    [26]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [27]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [28]

    Zhou M F, Wang W H, Lu J P, Ni Z H 2021 Nano Res. 14 29Google Scholar

    [29]

    Vaquero D, Clericò V, Salvador-Sánchez J, Martín-Ramos A, Díaz E, Domínguez-Adame F, Meziani Y M, Diez E, Quereda J 2020 Commun. Phys. 3 194Google Scholar

    [30]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474Google Scholar

    [31]

    Zhang X X, You Y, Zhao S Y, Heinz T F 2015 Phys. Rev. Lett. 115 257403Google Scholar

    [32]

    Tang Y H, Mak K F, Shan J 2019 Nat. Commun. 10 4047Google Scholar

    [33]

    You Y, Zhang X X, Berkelbach T C, Hybertsen M S, Reichman D R, Heinz T F 2015 Nat. Phys. 11 477Google Scholar

    [34]

    Ye Z, Waldecker L, Ma E Y, Rhodes D, Antony A, Kim B, Zhang X X, Deng M, Jiang Y, Lu Z, Smirnov D, Watanabe K, Taniguchi T, Hone J, Heinz T F 2018 Nat. Commun. 9 3718Google Scholar

    [35]

    Zhang X X, Cao T, Lu Z, Lin Y C, Zhang F, Wang Y, Li Z, Hone J C, Robinson J A, Smirnov D, Louie S G, Heinz T F 2017 Nat. Nanotechnol. 12 883Google Scholar

    [36]

    Li Y, Ludwig J, Low T, Chernikov A, Cui X, Arefe G, Kim Y D, van der Zande A M, Rigosi A, Hill H M, Kim S H, Hone J, Li Z, Smirnov D, Heinz T F 2014 Phys. Rev. Lett. 113 266804Google Scholar

    [37]

    Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [38]

    Amani M, Taheri P, Addou R, Ahn G H, Kiriya D, Lien D H, Ager J W, 3rd, Wallace R M, Javey A 2016 Nano Lett. 16 2786Google Scholar

    [39]

    Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503Google Scholar

    [40]

    Zhao G Y, Deng H, Tyree N, Guy M, Lisfi A, Peng Q, Yan J A, Wang C, Lan Y 2019 Appl. Sci. 9 678Google Scholar

    [41]

    Chee S S, Lee W J, Jo Y R, Cho M K, Chun D, Baik H, Kim B J, Yoon M H, Lee K, Ham M H 2020 Adv. Funct. Mater. 30 1908147Google Scholar

    [42]

    Li Y L, Liu W, Wang Y K, Xue Z H, Leng Y C, Hu A Q, Yang H, Tan P H, Liu Y Q, Misawa H, Sun Q, Gao Y N, Hu X Y, Gong Q H 2020 Nano Lett. 20 3747Google Scholar

    [43]

    Wu Z T, Zhao W W, Jiang J, Zheng T, You Y M, Lu J P, Ni Z H 2017 J. Phys. Chem. C 121 12294Google Scholar

    [44]

    Zheng Y J, Chen Y, Huang Y L, Gogoi P K, Li M Y, Li L J, Trevisanutto P E, Wang Q, Pennycook S J, Wee A T S, Quek S Y 2019 ACS Nano 13 6050Google Scholar

    [45]

    Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C T, Barja S, Koch R J, Ogletree D F, Aloni S, Schwartzberg A M, Neaton J B, Louie S G, Weber-Bargioni A 2019 Phys. Rev. Lett. 123 076801Google Scholar

    [46]

    Carozo V, Wang Y, Fujisawa K, Carvalho B R, McCreary A, Feng S, Lin Z, Zhou C, Perea-López N, Elías A L, Kabius B, Crespi V H, Terrones M 2017 Sci. Adv. 3 e1602813Google Scholar

    [47]

    Liu H, Wang C, Liu D M, Luo J B 2019 Nanoscale 11 7913Google Scholar

    [48]

    Liu H, Wang C, Zuo Z, Liu D M, Luo J B 2020 Adv. Mater. 32 e1906540Google Scholar

    [49]

    Greben K, Arora S, Harats M G, Bolotin K I 2020 Nano Lett. 20 2544Google Scholar

    [50]

    Zhang S, Wang C G, Li M Y, Huang D, Li L J, Ji W, Wu S 2017 Phys. Rev. Lett. 119 046101Google Scholar

    [51]

    Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lü R, Lopez-Urias F, Crespi V H, Terrones H, Terrones M 2013 Nano Lett. 13 3447Google Scholar

    [52]

    Tsai C, Li H, Park S, Park J, Han H S, Norskov J K, Zheng X, Abild-Pedersen F 2017 Nat. Commun. 8 15113Google Scholar

    [53]

    Godde T, Schmidt D, Schmutzler J, Aßmann M, Debus J, Withers F, Alexeev E M, Del Pozo-Zamudio O, Skrypka O V, Novoselov K S, Bayer M, Tartakovskii A I 2016 Phys. Rev. B 94 165301Google Scholar

    [54]

    McCreary A, Berkdemir A, Wang J, Nguyen M A, Elías A L, Perea-López N, Fujisawa K, Kabius B, Carozo V, Cullen D A, Mallouk T E, Zhu J, Terrones M 2016 J. Mater. Res. 31 931Google Scholar

    [55]

    Kim M S, Yun S J, Lee Y, Seo C, Han G H, Kim K K, Lee Y H, Kim J 2016 ACS Nano 10 2399Google Scholar

    [56]

    Feng J Y, Li Y Z, Li J X, Feng Q S, Xin W, Liu W Z, Xu H Y, Liu Y C 2022 Nano Lett. 22 3699Google Scholar

    [57]

    Xin M, Lan W Z, Wang G, Zhou Q, Gu C Z, Liu B L 2021 Appl. Phys. Lett. 119 153101Google Scholar

    [58]

    Liu H L, Yang T, Tatsumi Y, Zhang Y, Dong B J, Guo H H, Zhang Z D, Kumamoto Y, Li M Y, Li L J, Saito R, Kawata S 2018 Sci. Rep. 8 11398Google Scholar

    [59]

    Chow P K, Jacobs-Gedrim R B, Gao J, Lu T M, Yu B, Terrones H, Koratkar N 2015 ACS Nano 9 1520Google Scholar

    [60]

    Goodman A J, Willard A P, Tisdale W A 2017 Phys. Rev. B 96 121404Google Scholar

    [61]

    Berkdemir A, Gutiérrez H R, Botello-Méndez A R, Perea-López N, Elías A L, Chia C I, Wang B, Crespi V H, López-Urías F, Charlier J C, Terrones H, Terrones M 2013 Sci. Rep. 3 1755Google Scholar

    [62]

    Shang J Z, Shen X N, Cong C X, Peimyoo N, Cao B C, Eginligil M, Yu T 2015 ACS Nano 9 647Google Scholar

    [63]

    Wang G, Bouet L, Lagarde D, Vidal M, Balocchi A, Amand T, Marie X, Urbaszek B 2014 Phys. Rev. B 90 097403Google Scholar

    [64]

    Jadczak J, Kutrowska-Girzycka J, Kapuscinski P, Huang Y S, Wojs A, Bryja L 2017 Nanotechnology 28 395702Google Scholar

    [65]

    Singh A, Singh A K 2021 Phys. Rev. Mater. 5 084001Google Scholar

  • [1] Tang Yan-Hao. Exotic states in moiré superlattices of twisted semiconducting transition metal dichalcogenides. Acta Physica Sinica, 2023, 72(2): 027802. doi: 10.7498/aps.72.20222080
    [2] Zhao Gang, Liang Han-Pu, Duan Yi-Feng. Visible light modulation and anomalous thermal transport in two-dimensional X-AlN (X = C, Si, TC) semiconductor. Acta Physica Sinica, 2023, 72(9): 096301. doi: 10.7498/aps.72.20230116
    [3] Guo Rui-Ping, Yu Hong-Yi. Position- and momentum-dependent interlayer couplings in two-dimensional semiconductor moiré superlattices. Acta Physica Sinica, 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [4] Gu Jie, Ma Li-Guo. Exciton insulator in a moiré lattice. Acta Physica Sinica, 2023, 72(6): 067101. doi: 10.7498/aps.72.20230079
    [5] Duan Xiu-Ming, Yi Zhi-Jun. Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton. Acta Physica Sinica, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [6] Song Yu-Xin, Li Yu-Qi, Wang Ling-Han, Zhang Xiao-Lan, Wang Chong, Wang Qin-Sheng. Li intercalation modulated photocurrent response in WS2 optoelectronic devices. Acta Physica Sinica, 2023, 72(22): 226801. doi: 10.7498/aps.72.20231000
    [7] Hoo Qian-Ying, Xu Yang. Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application. Acta Physica Sinica, 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [8] Xu Qi, Sun Xiao-Wei, Song Ting, Wen Xiao-Dong, Liu Xi-Xuan, Wang Yi-Wen, Liu Zi-Jiang. Novel one-dimensional optomechanical crystal nanobeam with high optomechanical coupling rate under different defect states. Acta Physica Sinica, 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [9] Zou Shuang-Yang,  Muhammad Arshad,  Yang Gao-Ling,  Liu Rui-Bin,  Shi Li-Jie,  Zhang Yong-You,  Jia Bao-Hua,  Zhong Hai-Zheng,  Zou Bing-Suo. Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures. Acta Physica Sinica, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [10] Yu Yang,  Zhang Wen-Jie,  Zhao Wan-Ying,  Lin Xian,  Jin Zuan-Ming,  Liu Wei-Min,  Ma Guo-Hong. Dynamics of A-exciton and spin relaxation in WS2 and WSe2 monolayer. Acta Physica Sinica, 2019, 68(1): 017201. doi: 10.7498/aps.68.20181769
    [11] Wang Yan-Wen, Wu Hua-Rui. Exciton states and optical properties in zinc-blende GaN/AlGaN quantum dot. Acta Physica Sinica, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [12] Yue Lei-Lei, Chen Yu, Fan Guang-Hui, He Jiao, Zhao De-Xun, Liu Ying-Kai. Influence of defect states on band gaps of the 4340 steel in epoxy in two-dimensional phononic crystal. Acta Physica Sinica, 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [13] Zhao Yan, Shi Wei-Hua, Jiang Yue-Jin. Effect of defects outside the centre on dispersive properties of photonic band gap guiding photonic crystal fibers. Acta Physica Sinica, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [14] Cheng Ping, Gao Feng, Chen Xiang-Dong, Yang Ji-Ping. Effect of the electric field on the decay of excited states in poly-phenylenevinylene. Acta Physica Sinica, 2010, 59(4): 2831-2835. doi: 10.7498/aps.59.2831
    [15] Sun Zhen, An Zhong, Li Yuan, Liu Wen, Liu De-Sheng, Xie Shi-Jie. Study on the process of collision between a polaron and a triplet exciton in conjugated polymers. Acta Physica Sinica, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [16] Dong Jian-Wen, Chen Yi-Hang, Wang He-Zhou. Dispersion and localization of defect state in one-dimensional photonic crystal consisting of metamaterials. Acta Physica Sinica, 2007, 56(1): 268-273. doi: 10.7498/aps.56.268
    [17] Zhao Fang, Yuan Li-Bo. Defect states of homogeneity dislocation structures in two-dimensional phononic crystal. Acta Physica Sinica, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [18] Xu Quan, Tian Qiang. The interaction of excitons with phonons and solution of breathers in one-dimensional molecular chain. Acta Physica Sinica, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [19] Liu Wen-Kai, Lin Shi-Ming, Zhang Cun-Shan. . Acta Physica Sinica, 2002, 51(9): 2052-2056. doi: 10.7498/aps.51.2052
    [20] Wu Fu-Gen, Liu You-Yan. . Acta Physica Sinica, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
Metrics
  • Abstract views:  1974
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2024
  • Accepted Date:  17 May 2024
  • Available Online:  21 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回
Baidu
map