搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维X-AlN (X = C, Si, TC) 半导体的可见光调控与反常热输运

赵罡 梁汉普 段益峰

引用本文:
Citation:

二维X-AlN (X = C, Si, TC) 半导体的可见光调控与反常热输运

赵罡, 梁汉普, 段益峰

Visible light modulation and anomalous thermal transport in two-dimensional X-AlN (X = C, Si, TC) semiconductor

Zhao Gang, Liang Han-Pu, Duan Yi-Feng
PDF
HTML
导出引用
  • 在二维材料中, 平面六方氮化铝(AlN)对开发电子器件至关重要. 但宽带隙限制了其应用, 为进一步突破性能瓶颈, 本文采用结构搜索的方法找到一种新型孔状皱面的AlN构型, 由于其特殊的孔状构型, 可在孔中引入C, Si原子与碳三角环(TC)形成新型二维X-AlN (X = C, Si, TC)结构, 从而提升其光学与热学性能. 结果表明: 1) 在电子结构方面, 由于X-pz电子的局域性, 费米面附近产生的孤立能带将带隙值从4.12 eV (AlN)分别降至0.65 (C-AlN)和1.85 eV (Si-AlN), 显著改善了AlN的宽带隙. TC-AlN由于碳三角环间C-pz杂化形成离域π键, 使能量降低, 实现了间接带隙到直接带隙的转变. 2) 热输运方面, 与AlN, C/Si-AlN相比, TC-AlN由于碳三角环间强共价键抑制了垂直面内的声子振动, 极大地增强了热导率. 此外, 在X-AlN中施加双轴应变, 热导率出现先上升后下降的异常变化趋势, 这是源于随应变增强的N—N键带来的低非谐性与声子模软化降低群速度之间的竞争. 本工作给出了调控二维AlN性能的新路径, 为提高半导体电子、光学与热学性能提供有力指导.
    Aluminum nitride (AlN) is of paramount importance in developing electronic devices because of excellent stability and thermal transport performance. However, lack of novel materials which can provide colorful physical and chemical properties seriously hinders further digging out application potential. In this work, we perform an evolutionary structural search based on first-principles calculation and verify the dynamic and thermal dynamic stability of porous buckled AlN and X-AlN (X = C, Si, TC) structural system, which constructs by introducing C, Si atoms and triangular carbon (TC) into the porous vacancy of AlN, by calculating phonon spectra and first-principles molecular dynamic simulations. Structural deformation becomes gradually serious with the increase of structural unit size and significantly influences structural, electronic, and thermal transport properties. Firstly, we point out that a flat energy band appears around the Fermi level in C-AlN and Si-AlN because of weak interatomic interaction between C/Si and the neighbor Al atoms. Unoccupied C-/Si-pz and Al-pz do not form $ {\rm{\pi }} $ bond and only a localized flat band near Fermi level arises, and thus the absorption peaks of structures are enhanced and the red shift occurs. Bonding state of $ {\rm{\pi }} $ bond from hybridized C-pz orbitals in triangular carbon of TC-AlN lowers the energy of conduction band at K point in the first Brillouin zone and the corresponding antibonding state raises the band at Γ, therefore transition from indirect bandgap of AlN to direct bandgap of TC-AlN appears. Secondly, porous buckled AlN shows the lowest thermal conductivity due to asymmetric Al—N bonds around the porous vacancy and vertically stacked N—N bonds. Introduced C and Si atoms both reduce structural anharmonicity, while the former has a relatively small distortion, and so it has a higher thermal conductivity. Triangular carbon in TC-AlN hinders phonon scattering between FA mode and other phonon modes and has the weakest anharmonicity because of the strongest bond strength, and obtains the highest thermal transport performance. Finally, we unveil the physical mechanism of anomalous thermal conductivity in X-AlN system by modulating the biaxial tensile strain. Enhanced vertical N—N bonds dominate thermal transport due to its weaker anharmonicity with a slightly strain, and when tensile strain is above the 4%, soften phonon modes reduce phonon velocity and thus hinders the thermal transport process. Therefore, occurs the anomalous thermal transport behavior, i.e. thermal conductivity first rises and then drops with applied biaxial strain increasing. Our work paves the way for modulating two-dimensional AlN performance and provides a new insight for designing promising novel two-dimensional semiconductors.
      通信作者: 段益峰, yifeng@cumt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774416)资助的课题.
      Corresponding author: Duan Yi-Feng, yifeng@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774416).
    [1]

    Robinson J A 2018 APL Mater. 6 058202Google Scholar

    [2]

    Shi L, Xu A, Zhao T 2017 ACS Appl. Mater. Interfaces 9 1987Google Scholar

    [3]

    Cai Y, Liu Y, Xie Y, Zou Y, Gao C, Zhao Y, Liu S, Xu H, Shi J, Guo S, Sun C 2020 APL Mater. 8 021107Google Scholar

    [4]

    叶倩, 沈阳, 袁野, 赵祎峰, 段纯刚 2020 69 217710Google Scholar

    Ye Q, Shen Y, Yuan Y, Zhao Y F, Duan C G 2020 Acta Phys. Sin. 69 217710Google Scholar

    [5]

    陈蓉, 王远帆, 王熠欣, 梁前, 谢泉 2022 71 127301Google Scholar

    Chen R, Wang Y F, Wang Y X, Liang Q, Xie Q 2022 Acta Phys. Sin. 71 127301Google Scholar

    [6]

    Liang H P, Duan Y F 2022 Chin. Phys. B 31 076301Google Scholar

    [7]

    Lü F, Liang H P, Duan Y F 2023 J. Phys. Chem. Lett. 14 663Google Scholar

    [8]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [9]

    Liang H P, Duan Y F 2021 Nanoscale 13 11994Google Scholar

    [10]

    Akal L, Kusuki Y, N Shiba, Takayanagi T, Wei Z X 2021 Phys. Rev. Lett. 126 061604Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666Google Scholar

    [12]

    卢晓波, 张广宇 2015 64 077305Google Scholar

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305Google Scholar

    [13]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [14]

    Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Research 821 841

    [15]

    Shimada K, Sota T, Suzuki K 1998 J. Appl. Phys. 84 4951Google Scholar

    [16]

    Zhang H, Yu S, Liu F, Wang Z, Lu M, Hu X, Chen Y, Xu X 2017 Sci. Chin. Phys. Mech. Astron. 60 044311Google Scholar

    [17]

    冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰 2013 62 116302Google Scholar

    Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 116302Google Scholar

    [18]

    林竹, 郭志友, 毕艳君, 董玉成 2009 58 191707Google Scholar

    Lin Z, Guo Z Y, Bi Y Z, Dong Y C 2009 Acta phys. Sin. 58 191707Google Scholar

    [19]

    程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂 2018 67 047101Google Scholar

    Cheng L, Wang D X, Zhang Y, Su L P, Chen S Y, Wang X F, Sun P, Yi C G 2018 Acta Phys. Sin. 67 047101Google Scholar

    [20]

    高小奇, 郭志友, 曹东兴, 张宇飞, 孙慧卿, 邓贝 2010 59 3418Google Scholar

    Gao X Q, Guo Z Y, Cao D X, Zhang Y F, Sun H Q, Deng B 2010 Acta Phys. Sin. 59 3418Google Scholar

    [21]

    de Almeida Jr E F, de Brito Mota F, de Castilho C M C, Kakanakova-Georgieva A, Gueorguiev G K 2012 Eur. Phys. J. B 85 48Google Scholar

    [22]

    Jia Y P, Shi Z M, Hou W T, Zang H, Jiang K, Chen Y, Zhang S L, Qi Z B, Wu T, Sun X J, Li D B 2020 Npj 2D Mater. Appl. 4 31Google Scholar

    [23]

    Gürbüz E, Cahangirov S, Durgun E, Ciraci S 2017 Phys. Rev. B 96 205427Google Scholar

    [24]

    Zhou R, Liang H P, Duan Y F, Wei S H 2023 J. Phys. Chem. Lett. 14 737Google Scholar

    [25]

    Sheng X L, Yan Q B, Ye F, Zheng Q R, Su G 2011 Phys. Rev. Lett. 106 155703Google Scholar

    [26]

    Zhang J, Wang R, Zhu X, Pan A, Han C, Li X, Zhao D, Ma C, Wang Q, Su H, Niu C 2017 Nat. Commun. 8 683Google Scholar

    [27]

    Liu W H, Luo J W, Li S, Wang L W 2020 Phys. Rev. B 102 184308Google Scholar

    [28]

    Liang H P, Zhong H Z, Huang S, Duan Y F 2021 J. Phys. Chem. Lett. 12 10975Google Scholar

    [29]

    Oganov A R, Ma Y, Lyahov A O, Valle M, Gatti C 2010 Rev. Mineral. Geochem. 71 271Google Scholar

    [30]

    Oganov A R, Lyahov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [31]

    Oganov A R, Class C W 2006 J. Chem. Phys. 124 244704Google Scholar

    [32]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [33]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [34]

    Kresse H, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [35]

    Kresse H, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [36]

    Kresse H, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Heyd J, Scueria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [39]

    Jia W, Fu J, Cao Z, Wang L, Chi X, Gao W, Wang L W 2013 Comput. Phys. Commun. 251 102Google Scholar

    [40]

    Jia W, Cao Z, Wang L, Fu J, Chi X, Gao W, Wang L W 2013 Comput. Phys. Commun. 184 9Google Scholar

    [41]

    Atsush T, Isa T 2015 Scr. Mater. 108 1Google Scholar

    [42]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [43]

    Homayoun J, Bahram A R, Mahdi F 2018 Solid State Commun. 282 21Google Scholar

    [44]

    程正富, 郑瑞伦 2016 65 104701Google Scholar

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701Google Scholar

    [45]

    Lü F, Liang H P, Duan Y F 2023 Phys. Rev. B 107 045422Google Scholar

    [46]

    Koh Y R, Mamun A, Bin Hoque M S, Liu Z Y, Bai T Y, Hussain K, Liao M E, Li R Y, Gaskins J T, Giri A, Tomko J, Braun J L, Gaevski M, Lee E, Yates L, Goorsky M S, Luo T F, Khan A, Graham S, Hopkins P E 2020 ACS Appl. Mater. Interfaces 12 29443

    [47]

    Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X, Pereira L F C, Rabczuk T 2019 Carbon 149 733Google Scholar

    [48]

    Lindsay L, Broido D A, Mingo N 2010 Phys. Rev. B 82 115427Google Scholar

  • 图 1  孔状皱面AlN以及由AlN的孔中引入C, Si原子与碳三角环的C-AlN, Si-AlN和TC-AlN的晶格结构

    Fig. 1.  Lattice structure of porous buckled AlN and AlN-C, AlN-Si and AlN-TC, which construct by introducing C, Si atoms and triangular carbon (TC) in AlN.

    图 2  (a) AlN, (b) C-AlN, (c) Si-AlN 与 (d) TC-AlN的电子结构及其态密度. 费米面附近能带的部分电荷分布图插入在电子结构图中

    Fig. 2.  Electronic structure and density of states of (a) AlN, (b) C-AlN, (c) Si-AlN, and (d) TC-AlN. Partial charge distributions of the band near the Fermi level are inserted in the electronic structures.

    图 3  孔状皱面AlN与X-AlN (X = C, Si, TC)的光吸收系数

    Fig. 3.  Optical absorption coefficients of porous buckled AlN and X-AlN (X = C, Si, TC).

    图 4  孔状皱面AlN与X-AlN (X = C, Si, TC)的(a)在300 K下的晶格热导率, (b) 各声子支相对热导贡献, (d) 声子弛豫时间与(e) 声子群速度平方. (c) TC-AlN前九支声子支非谐散射率在第一布里渊区中的分布. 图(a)中的插图为随温度变化的晶格热导率; 图(b)中的插图为TC-AlN声子支的热导贡献

    Fig. 4.  (a) Lattice thermal conductivity at 300 K, (b) relative thermal conductivity contribution of each phonon branch, (d) phonon relaxation time and (e) square of phonon group velocity for porous buckled AlN and X-AlN (X = C, Si, TC). (c) The distribution of anharmonic scattering rates of the first 9 phonon branches of TC-AlN in the first Brillouin zone. The lattice thermal conductivity versus temperature is inserted in panel (a); the thermal conductivity contribution of each phonon branch of TC-AlN is inserted in panel (b).

    图 5  孔状皱面AlN与X-AlN (X = C, Si)随频率变化的(a)声子群速度、(b)非谐散射率和(c)晶格热导率

    Fig. 5.  (a) Phonon group velocity, (b) anharmonic scattering rates, and (c) lattice thermal conductivity versus frequency for porous buckled AlN and X-AlN (X = C, Si).

    图 6  在不同应变下X-AlN (X = C, Si, TC)的(a) 300 K下晶格热导率、(b) N—N键键强. TC-AlN的(c)非谐散射率与(d)频率变化的晶格热导. 8%应力下N—N键键长改变量、随应力变化的键长与群速度作为插图分别在图(a), 图(b), 图(c) 中

    Fig. 6.  (a) Lattice thermal conductivity at 300 K and (b) N—N bond strength at different strains for X-AlN (X = C, Si and TC). (c) Anharmonic scattering rates and (d) lattice thermal conductivity distribution versus frequency for TC-AlN. The changes of N—N bond length at 8% strain, bond lengths with variation of strains, and group velocity of TC-AlN as the insets of panels (a), (b), and (c), respectively.

    表 1  X-AlN (X = C, Si, TC)的结构参数与电子、结构和热学性质. 其中键角$ \alpha $为孔状空位边缘N—Al—N的角度, 键长为所引入原子X与临近Al成键的键长

    Table 1.  Structural parameters and electronic, structural and thermal properties of X-AlN (X = C, Si, TC). Bond angle $ \alpha $ locates at the N—Al—N near the porous vacancy, and bond length is the distance between the introduced atoms and the neighbor Al.

    结构晶格常数/Å键角$ \alpha / $(°)键长/Å杨氏模量 /(N·m–1)泊松比带隙/eV热导率/(W·m–1·K–1)
    AlN5.12113.9070.570.394.12/间接6.86
    C-AlN5.51122.081.9489.020.500.65/间接17.30
    Si-AlN5.89138.382.4479.280.471.85/间接10.08
    TC-AlN6.08167.631.9690.950.413.95/直接123.75
    下载: 导出CSV
    Baidu
  • [1]

    Robinson J A 2018 APL Mater. 6 058202Google Scholar

    [2]

    Shi L, Xu A, Zhao T 2017 ACS Appl. Mater. Interfaces 9 1987Google Scholar

    [3]

    Cai Y, Liu Y, Xie Y, Zou Y, Gao C, Zhao Y, Liu S, Xu H, Shi J, Guo S, Sun C 2020 APL Mater. 8 021107Google Scholar

    [4]

    叶倩, 沈阳, 袁野, 赵祎峰, 段纯刚 2020 69 217710Google Scholar

    Ye Q, Shen Y, Yuan Y, Zhao Y F, Duan C G 2020 Acta Phys. Sin. 69 217710Google Scholar

    [5]

    陈蓉, 王远帆, 王熠欣, 梁前, 谢泉 2022 71 127301Google Scholar

    Chen R, Wang Y F, Wang Y X, Liang Q, Xie Q 2022 Acta Phys. Sin. 71 127301Google Scholar

    [6]

    Liang H P, Duan Y F 2022 Chin. Phys. B 31 076301Google Scholar

    [7]

    Lü F, Liang H P, Duan Y F 2023 J. Phys. Chem. Lett. 14 663Google Scholar

    [8]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [9]

    Liang H P, Duan Y F 2021 Nanoscale 13 11994Google Scholar

    [10]

    Akal L, Kusuki Y, N Shiba, Takayanagi T, Wei Z X 2021 Phys. Rev. Lett. 126 061604Google Scholar

    [11]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A 2004 Science 306 666Google Scholar

    [12]

    卢晓波, 张广宇 2015 64 077305Google Scholar

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305Google Scholar

    [13]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [14]

    Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Research 821 841

    [15]

    Shimada K, Sota T, Suzuki K 1998 J. Appl. Phys. 84 4951Google Scholar

    [16]

    Zhang H, Yu S, Liu F, Wang Z, Lu M, Hu X, Chen Y, Xu X 2017 Sci. Chin. Phys. Mech. Astron. 60 044311Google Scholar

    [17]

    冯嘉恒, 唐立丹, 刘邦武, 夏洋, 王冰 2013 62 116302Google Scholar

    Feng J H, Tang L D, Liu B W, Xia Y, Wang B 2013 Acta Phys. Sin. 62 116302Google Scholar

    [18]

    林竹, 郭志友, 毕艳君, 董玉成 2009 58 191707Google Scholar

    Lin Z, Guo Z Y, Bi Y Z, Dong Y C 2009 Acta phys. Sin. 58 191707Google Scholar

    [19]

    程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂 2018 67 047101Google Scholar

    Cheng L, Wang D X, Zhang Y, Su L P, Chen S Y, Wang X F, Sun P, Yi C G 2018 Acta Phys. Sin. 67 047101Google Scholar

    [20]

    高小奇, 郭志友, 曹东兴, 张宇飞, 孙慧卿, 邓贝 2010 59 3418Google Scholar

    Gao X Q, Guo Z Y, Cao D X, Zhang Y F, Sun H Q, Deng B 2010 Acta Phys. Sin. 59 3418Google Scholar

    [21]

    de Almeida Jr E F, de Brito Mota F, de Castilho C M C, Kakanakova-Georgieva A, Gueorguiev G K 2012 Eur. Phys. J. B 85 48Google Scholar

    [22]

    Jia Y P, Shi Z M, Hou W T, Zang H, Jiang K, Chen Y, Zhang S L, Qi Z B, Wu T, Sun X J, Li D B 2020 Npj 2D Mater. Appl. 4 31Google Scholar

    [23]

    Gürbüz E, Cahangirov S, Durgun E, Ciraci S 2017 Phys. Rev. B 96 205427Google Scholar

    [24]

    Zhou R, Liang H P, Duan Y F, Wei S H 2023 J. Phys. Chem. Lett. 14 737Google Scholar

    [25]

    Sheng X L, Yan Q B, Ye F, Zheng Q R, Su G 2011 Phys. Rev. Lett. 106 155703Google Scholar

    [26]

    Zhang J, Wang R, Zhu X, Pan A, Han C, Li X, Zhao D, Ma C, Wang Q, Su H, Niu C 2017 Nat. Commun. 8 683Google Scholar

    [27]

    Liu W H, Luo J W, Li S, Wang L W 2020 Phys. Rev. B 102 184308Google Scholar

    [28]

    Liang H P, Zhong H Z, Huang S, Duan Y F 2021 J. Phys. Chem. Lett. 12 10975Google Scholar

    [29]

    Oganov A R, Ma Y, Lyahov A O, Valle M, Gatti C 2010 Rev. Mineral. Geochem. 71 271Google Scholar

    [30]

    Oganov A R, Lyahov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [31]

    Oganov A R, Class C W 2006 J. Chem. Phys. 124 244704Google Scholar

    [32]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [33]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [34]

    Kresse H, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [35]

    Kresse H, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [36]

    Kresse H, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Heyd J, Scueria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [39]

    Jia W, Fu J, Cao Z, Wang L, Chi X, Gao W, Wang L W 2013 Comput. Phys. Commun. 251 102Google Scholar

    [40]

    Jia W, Cao Z, Wang L, Fu J, Chi X, Gao W, Wang L W 2013 Comput. Phys. Commun. 184 9Google Scholar

    [41]

    Atsush T, Isa T 2015 Scr. Mater. 108 1Google Scholar

    [42]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [43]

    Homayoun J, Bahram A R, Mahdi F 2018 Solid State Commun. 282 21Google Scholar

    [44]

    程正富, 郑瑞伦 2016 65 104701Google Scholar

    Cheng Z F, Zheng R L 2016 Acta Phys. Sin. 65 104701Google Scholar

    [45]

    Lü F, Liang H P, Duan Y F 2023 Phys. Rev. B 107 045422Google Scholar

    [46]

    Koh Y R, Mamun A, Bin Hoque M S, Liu Z Y, Bai T Y, Hussain K, Liao M E, Li R Y, Gaskins J T, Giri A, Tomko J, Braun J L, Gaevski M, Lee E, Yates L, Goorsky M S, Luo T F, Khan A, Graham S, Hopkins P E 2020 ACS Appl. Mater. Interfaces 12 29443

    [47]

    Mortazavi B, Shahrokhi M, Raeisi M, Zhuang X, Pereira L F C, Rabczuk T 2019 Carbon 149 733Google Scholar

    [48]

    Lindsay L, Broido D A, Mingo N 2010 Phys. Rev. B 82 115427Google Scholar

  • [1] 李冀, 陈亮, 冯芒. 基于离子阱中离子晶体的热传导的研究进展.  , 2024, 73(3): 033701. doi: 10.7498/aps.73.20231719
    [2] 苗瑞霞, 谢妙春, 程开, 李田甜, 杨小峰, 王业飞, 张德栋. Te掺杂对二维InSe抗氧化性以及电子结构的影响.  , 2023, 72(12): 123101. doi: 10.7498/aps.72.20230004
    [3] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合.  , 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [4] 曹义刚, 付萌萌, 杨喜昶, 李登峰, 王晓霞. 热传导对横截面不同的直管道中Kelvin-Helmholtz不稳定性的影响.  , 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [5] 苏瑞霞, 黄霞, 郑志刚. 耦合Frenkel-Kontorova双链的格波解及其色散关系.  , 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [6] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率.  , 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [7] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质.  , 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [8] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质.  , 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [9] 敖宏瑞, 陈漪, 董明, 姜洪源. 基于多物理场的TFC磁头热传导机理及其影响因素仿真研究.  , 2014, 63(3): 034401. doi: 10.7498/aps.63.034401
    [10] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] 文娟辉, 杨琼, 曹觉先, 周益春. 铁电薄膜漏电流的应变调控.  , 2013, 62(6): 067701. doi: 10.7498/aps.62.067701
    [12] 高潭华, 吴顺情, 胡春华, 朱梓忠. 二维BC2 N薄片的结构稳定性和电子性质.  , 2011, 60(12): 127305. doi: 10.7498/aps.60.127305
    [13] 高秀云, 郑志刚. 一维均匀Morse晶格体系的热流棘齿效应.  , 2011, 60(4): 044401. doi: 10.7498/aps.60.044401
    [14] 李金, 桂贵, 孙立忠, 钟建新. 单轴大应变下二维六角氮化硼的结构变化.  , 2010, 59(12): 8820-8828. doi: 10.7498/aps.59.8820
    [15] 周桂耀, 侯峙云, 潘普丰, 侯蓝田, 李曙光, 韩 颖. 微结构光纤预制棒拉制过程的温度场分布.  , 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [16] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究.  , 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [17] 王贵春, 袁建民. Cu低维体系的结构和电子性质.  , 2003, 52(4): 970-977. doi: 10.7498/aps.52.970
    [18] 秦 颖, 王晓钢, 董 闯, 郝胜智, 刘 悦, 邹建新, 吴爱民, 关庆丰. 强流脉冲电子束诱发温度场及表面熔坑的形成.  , 2003, 52(12): 3043-3048. doi: 10.7498/aps.52.3043
    [19] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究.  , 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [20] 王立民, 罗莹, 马本堃. 双量子点分子的电子结构.  , 2001, 50(2): 278-286. doi: 10.7498/aps.50.278
计量
  • 文章访问数:  3954
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-29
  • 修回日期:  2023-02-17
  • 上网日期:  2023-03-16
  • 刊出日期:  2023-05-05

/

返回文章
返回
Baidu
map