Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures

Zou Shuang-Yang Muhammad Arshad Yang Gao-Ling Liu Rui-Bin Shi Li-Jie Zhang Yong-You Jia Bao-Hua Zhong Hai-Zheng Zou Bing-Suo

Citation:

Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures

Zou Shuang-Yang, Muhammad Arshad, Yang Gao-Ling, Liu Rui-Bin, Shi Li-Jie, Zhang Yong-You, Jia Bao-Hua, Zhong Hai-Zheng, Zou Bing-Suo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Spin is an intrinsic nature of the angular momentum of elementary particle like electron and photon. Currently the collective spin behaviors of the multi-electrons in condensed matter, such as GMR, CMR and topological insulator which are the behaviors of ground state, have been a research focus in the condensed matter physics, due to the fact that the collective spin is related to electronic transports. Exciton is another type of bosonic quasiparticle, an excited state of electronhole pair in solid, which has a short lifetime and can recombine to emit light. Whether excitons can also exhibit the spin-polarized dominance before they recombine, has not been understood yet. It is proposed that excitons form condensate by themselves or light binding. Can coupled spins conduce to the formation of the exciton condensate in solid? Excitonic magnetic polaron (EMP) is the composite exciton of ferromagnetically coupled spins and free excitons in magnetic semiconductors, which may lead to ferromagnetic Bose-Einstein condensate (BEC) due to the binding of collective spins in a microstructure, like the photon binding excitons (exciton polaritons) in an optical cavity However, this subject has not been a research focus yet. Here in this paper, we review the progress of the EMP formation, its dynamic behaviors and spin polarized collective EMP emission and lasing in Ⅱ-VI dilute magnetic semiconductor micro-structures in our group Besides, we also present some expectations for the applications or advances in the quantum phenomena such as spin-related emission and lasing, spin induced BEC, photon induced magnetism and Hall effect, etc. Even more achievements of EMP could be expected in the future.
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Dietl T 2010 Nat. Mater. 9 965

    [3]

    Merkulov I A, Yakovlev D R, Keller A, Ossau W, Geurts J, Waag A, Landwehr G, Karczewski G, Wojtowicz T, Kossut J 1999 Phys. Rev. Lett. 83 1431

    [4]

    Bhattacharjee A K, Benoit Guillaume C 1997 Phys. Rev. B: Condens. Matter 55 10613

    [5]

    Norberg N S, Parks G L, Salley G M, Gamelin D R 2006 J. Am. Chem. Soc. 128 13195

    [6]

    Beaulac R, Schneider L, Archer P I, Bacher G, Gamelin D R 2009 Science 325 973

    [7]

    Schwartz D A, Norberg N S, Nguyen Q P, Parker J M, Gamelin D R 2003 J. Am. Chem. Soc. 125 13205

    [8]

    Bhattacharjee A K 2007 Phys. Rev B: Condens. Matter 76 075305

    [9]

    Kavokin A, Gil B, Bigenwald P 1998 Phys. Rev. B: Condens. Matter 57 4261

    [10]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691

    [11]

    Su, J J, MacDonald A H 2008 Nature Phys. 4 799

    [12]

    Kłopotowski Ł, Cywiński Ł, Wojnar P, Voliotis V, Fronc K, Kazimierczuk T, Golnik A, Ravaro M, Grousson R, Karczewski G, Wojtowicz T 2011 Phys. Rev. B: Condens. Matter 83 081306

    [13]

    Mackh G, Ossau W, Yakovlev D R, Waag A, Landwehr G, Hellmann R, Göbel E O 1994 Phys. Rev. B: Condens. Matter 49 10248

    [14]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [15]

    Raebiger H, Lany S, Zunger A 2007 Phys. Rev. Lett. 99 167203

    [16]

    Ivanov V A, Pashkova O N, Ugolkova E A, Sanygin V P, Galéra R M 2008 Inorg. Mater. 44 1041

    [17]

    Zou B S, Liu R B, Wang F F, Pan A L, Cao L, Wang Z L 2006 J. Phys. Chem. B 110 12865

    [18]

    Bulakh B, Khomenkova L, Kushnirenko V, Markevich I 2004 Europ. Phys. J.: Appl. Phys. 27 305

    [19]

    Schmitt-Rink S, Chemla D S, Miller D A B 1989 Adv. Phys. 38 89

    [20]

    Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816

    [21]

    Johnson J C, Knutsen K P, Yan H, Law M, Zhang Y, Yang P, Saykally R J 2004 Nano Lett. 4 197

    [22]

    Klingshirn C 1992 J. Cryst. Growth 117 753

    [23]

    Griffin A, Snoke D W, Stringari S 1996 Bose-Einstein Condensation (Cambridge: Cambridge University Press)

    [24]

    Godde T, Reshina I I, Ivanov S V, Akimov I A, Yakovlev D R, Bayer M 2010 Phys. Status Solidi (b) 247 1508

    [25]

    Wang R P, Xu G, Jin P 2004 Phys. Rev. B: Condens. Matter 69 113303

    [26]

    Liu R, Shi L, Zou B 2014 ACS Appl. Mat. Interf. 6 10353

    [27]

    Rashba E, Sturge M 1982 Excitons (North Holland: Amsterdam)

    [28]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 47104

    [29]

    Pokatilov E P, Fomin V M, Devreese J T, Balaban S N, Klimin S N 2000 Phys. Rev. B: Condens. Matter 61 2721

    [30]

    Butov L V, Lai C W, Ivanov A L, Gossard A C, Chemla D S 2002 Nature 417 47

    [31]

    Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y 1998 Appl. Phys. Lett. 72 3270

    [32]

    Cao L, Miao Y, Zhang Z, Xie S S, Yang G Z, Zou B S 2005 J. Chem. Phys. 123 024702

    [33]

    Lövenich R, Schäfer W, Kner P, Chemla D S 1997 Physica Status Solidi (a) 164 347

    [34]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [35]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673

    [36]

    Jin Z W, Yoo Y Z, Sekiguchi T, Chikyow T, Ofuchi H, Fujioka H, Oshima M, Koinuma H 2003 Appl. Phys. Lett. 83 39

    [37]

    Norberg N S, Kittilstved K R, Amonette J E, Kukkadapu R K, Schwartz D A, Gamelin D R 2004 J. Am. Chem. Soc. 126 9387

    [38]

    Furdyna J K 1988 J. Appl. Phys. 64 R29

    [39]

    Takahashi M 2004 Phys. Rev. B: Condens. Matter 70 035207

    [40]

    Mizokawa T, Nambu T, Fujimori A, Fukumura T, Kawasaki M 2002 Phys. Rev. B: Condens. Matter 65 085209

    [41]

    Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B, Slavin A N 2006 Nature 443 430

    [42]

    Maksimov A A, Bacher G, McDonald A, Kulakovskii V D, Forchel A, Becker C R, Landwehr G, Molenkamp L W 2000 Phys. Rev. B: Condens. Matter 62 R7767

    [43]

    Seufert J, Bacher G, Scheibner M, Forchel A, Lee S, Dobrowolska M, Furdyna J K 2001 Phys. Rev. Lett. 88 027402

    [44]

    Sun L, Chen Z, Ren Q, Yu K, Bai L, Zhou W, Xiong H, Zhu Z Q, Shen X 2008 Phys. Rev. Lett. 100 156403

    [45]

    Xie W, Dong H, Zhang S, Sun L, Zhou W, Ling Y, Lu J, Shen X, Chen Z 2012 Phys. Rev. Lett. 108 166401

    [46]

    Liu R, Pan A, Fan H, Wang F, Shen Z, Yang G, Xie S, Zou B 2007 J. Phys.: Condens. Matter 19 136206

    [47]

    Leung Y H, Kwok W M, Djurišić A B, Phillips D L, Chan W K 2005 Nanotechnology 16 579

    [48]

    Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W, Bloch I 2004 Nature 429 277

    [49]

    Kinoshita T, Wenger T, Weiss D S 2004 Science 305 1125

    [50]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691

    [51]

    Kamran M A, Liu R, Shi L, Li Z, Marzi T, Schöppner C, Farle M, Zou B S 2014 Nanotechnology 25 385201

    [52]

    Kamran M A, Liu R, Shi L, Zou B S, Zhang Q 2013 J. Phys. Chem. C 117 17777

    [53]

    Zuo T, Sun Z, Zhao Y, Jiang X, Gao X 2010 J. Am. Chem. Soc. 132 6618

    [54]

    Pradhan N, Peng X 2007 J. Am. Chem. Soc. 129 3339

    [55]

    Hazarika A, Layek A, De S, Nag A, Debnath S, Mahadevan P, Chowdhury A, Sarma D D 2013 Phys. Rev. Lett. 110 267401

    [56]

    Erwin S C, Zu L J, Haftel M I, Efros A L, Kennedy T A, Norris D J 2005 Nature 436 91

    [57]

    Yang G, Xu G, Chen B, Zou S, Liu R, Zhong H, Zou B 2013 Chem. Mater. 25 3260

    [58]

    Bhattacharyya S, Estrin Y, Rich D H, Zitoun D, Koltypin Y, Gedanken A 2010 J. Phys. Chem. C 114 22002

    [59]

    Gumlich H E, Moser R, Neumann E 1967 Phys. Status Solidi (b) 24 K13

    [60]

    Nag A, Cherian R, Mahadevan P, Gopal A V, Hazarika A, Mohan A, Vengurlekar A S, Sarma D D 2010 J. Phys. Chem. C 114 18323

    [61]

    Cui X Y, Delley B, Freeman A J, Stampfl C 2007 Phys. Rev. B: Condens. Matter 76 045201

    [62]

    Durst A C, Bhatt R N, Wolff P A 2002 Phys. Rev. B: Condens. Matter 65 235205

    [63]

    Wojtowicz T, Koleśnik S, Miotkowski I, Furdyna J K 1993 Phys. Rev. Lett. 70 2317

    [64]

    Beaulac R, Feng Y, May J W, Badaeva E, Gamelin D R, Li X 2011 Phys. Rev. B: Condens. Matter 84 195324

    [65]

    Delikanli S, He S, Qin Y, Zhang P, Zeng H, Zhang H, Swihart M 2008 Appl. Phys. Lett. 93 132501

    [66]

    Kisliuk P, Chang N C, Scott P L, Pryce M H L 1969 Phys. Rev. 184 367

    [67]

    Spano F C, Silva C 2014 Annu. Rev. Phys. Chem. 65 477

    [68]

    Muhammad A K, Zhang Y Y, Liu R B, Shi L J, Zou B S 2014 Chin. Phys. Lett. 31 067802

    [69]

    Zou S, Kamran M A, Shi L J, Liu R B, Guo S, Kavokin A, Zou B S 2016 ACS Photon. 3 1809

    [70]

    Bonanni A, Navarro-Quezada A, Li T, Wegscheider M, Matěj Z, Holy V, Lechner R T, Bauer G, Rovezzi M, D'Acapito F, Kiecana M, Sawicki M, Dietl T 2008 Phys. Rev. Lett. 101 135502

    [71]

    Zhang Y B, Assadi M H N, Li S 2009 J. Phys.: Condens. Matter 21 175802

    [72]

    Oka Y, Shen J, Takabayashi K, Takahashi N, Mitsu H, Souma I, Pittini R 1999 J. Lumin. 83 83

    [73]

    Godlewski M, Yatsunenko S, Khachapuridze A, Ivanov V Y, Gołacki Z, Karczewski G, Bergman P J, Klar P J, Heimbrodt W, Phillips M R 2004 J. Alloy. Compd. 380 45

    [74]

    Chang K, Peeters F M 2003 Phys. Rev. B: Condens. Matter 68 205320

    [75]

    Katayama K, Miyajima K, Ashida M, Itoh T 2012 J. Phys.: Condens. Matter 24 325801

    [76]

    Dey A, Yarlagadda S 2014 Phys. Rev. B: Condens. Matter 89 064311

    [77]

    Butov L V, Filin A I 1998 Phys. Rev. B: Condens. Matter 58 1980

    [78]

    Snoke D W 2011 Adv. Condens. Matter Phys. 2011 938609

    [79]

    Moskalenko S A, Liberman M A, Dumanov E V 2011 J. Nanoelectron. Optoelectron. 6 393

    [80]

    Hague J P, Kornilovitch P E 2010 Phys. Rev. B: Condens. Matter 82 094301

    [81]

    Hague J P, Kornilovitch P E, Samson J H, Alexandrov A S 2007 Phys. Rev. Lett. 98 037002

    [82]

    Voigt J, Spiegelberg F, Senoner M 1979 Phys. Status Solidi 91 189

    [83]

    Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M 2018 Science 359 4005

    [84]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nature Photon. 9 796

  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488

    [2]

    Dietl T 2010 Nat. Mater. 9 965

    [3]

    Merkulov I A, Yakovlev D R, Keller A, Ossau W, Geurts J, Waag A, Landwehr G, Karczewski G, Wojtowicz T, Kossut J 1999 Phys. Rev. Lett. 83 1431

    [4]

    Bhattacharjee A K, Benoit Guillaume C 1997 Phys. Rev. B: Condens. Matter 55 10613

    [5]

    Norberg N S, Parks G L, Salley G M, Gamelin D R 2006 J. Am. Chem. Soc. 128 13195

    [6]

    Beaulac R, Schneider L, Archer P I, Bacher G, Gamelin D R 2009 Science 325 973

    [7]

    Schwartz D A, Norberg N S, Nguyen Q P, Parker J M, Gamelin D R 2003 J. Am. Chem. Soc. 125 13205

    [8]

    Bhattacharjee A K 2007 Phys. Rev B: Condens. Matter 76 075305

    [9]

    Kavokin A, Gil B, Bigenwald P 1998 Phys. Rev. B: Condens. Matter 57 4261

    [10]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691

    [11]

    Su, J J, MacDonald A H 2008 Nature Phys. 4 799

    [12]

    Kłopotowski Ł, Cywiński Ł, Wojnar P, Voliotis V, Fronc K, Kazimierczuk T, Golnik A, Ravaro M, Grousson R, Karczewski G, Wojtowicz T 2011 Phys. Rev. B: Condens. Matter 83 081306

    [13]

    Mackh G, Ossau W, Yakovlev D R, Waag A, Landwehr G, Hellmann R, Göbel E O 1994 Phys. Rev. B: Condens. Matter 49 10248

    [14]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [15]

    Raebiger H, Lany S, Zunger A 2007 Phys. Rev. Lett. 99 167203

    [16]

    Ivanov V A, Pashkova O N, Ugolkova E A, Sanygin V P, Galéra R M 2008 Inorg. Mater. 44 1041

    [17]

    Zou B S, Liu R B, Wang F F, Pan A L, Cao L, Wang Z L 2006 J. Phys. Chem. B 110 12865

    [18]

    Bulakh B, Khomenkova L, Kushnirenko V, Markevich I 2004 Europ. Phys. J.: Appl. Phys. 27 305

    [19]

    Schmitt-Rink S, Chemla D S, Miller D A B 1989 Adv. Phys. 38 89

    [20]

    Johnson J C, Yan H, Yang P, Saykally R J 2003 J. Phys. Chem. B 107 8816

    [21]

    Johnson J C, Knutsen K P, Yan H, Law M, Zhang Y, Yang P, Saykally R J 2004 Nano Lett. 4 197

    [22]

    Klingshirn C 1992 J. Cryst. Growth 117 753

    [23]

    Griffin A, Snoke D W, Stringari S 1996 Bose-Einstein Condensation (Cambridge: Cambridge University Press)

    [24]

    Godde T, Reshina I I, Ivanov S V, Akimov I A, Yakovlev D R, Bayer M 2010 Phys. Status Solidi (b) 247 1508

    [25]

    Wang R P, Xu G, Jin P 2004 Phys. Rev. B: Condens. Matter 69 113303

    [26]

    Liu R, Shi L, Zou B 2014 ACS Appl. Mat. Interf. 6 10353

    [27]

    Rashba E, Sturge M 1982 Excitons (North Holland: Amsterdam)

    [28]

    Liu R B, Zou B S 2011 Chin. Phys. B 20 47104

    [29]

    Pokatilov E P, Fomin V M, Devreese J T, Balaban S N, Klimin S N 2000 Phys. Rev. B: Condens. Matter 61 2721

    [30]

    Butov L V, Lai C W, Ivanov A L, Gossard A C, Chemla D S 2002 Nature 417 47

    [31]

    Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y 1998 Appl. Phys. Lett. 72 3270

    [32]

    Cao L, Miao Y, Zhang Z, Xie S S, Yang G Z, Zou B S 2005 J. Chem. Phys. 123 024702

    [33]

    Lövenich R, Schäfer W, Kner P, Chemla D S 1997 Physica Status Solidi (a) 164 347

    [34]

    Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019

    [35]

    Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673

    [36]

    Jin Z W, Yoo Y Z, Sekiguchi T, Chikyow T, Ofuchi H, Fujioka H, Oshima M, Koinuma H 2003 Appl. Phys. Lett. 83 39

    [37]

    Norberg N S, Kittilstved K R, Amonette J E, Kukkadapu R K, Schwartz D A, Gamelin D R 2004 J. Am. Chem. Soc. 126 9387

    [38]

    Furdyna J K 1988 J. Appl. Phys. 64 R29

    [39]

    Takahashi M 2004 Phys. Rev. B: Condens. Matter 70 035207

    [40]

    Mizokawa T, Nambu T, Fujimori A, Fukumura T, Kawasaki M 2002 Phys. Rev. B: Condens. Matter 65 085209

    [41]

    Demokritov S O, Demidov V E, Dzyapko O, Melkov G A, Serga A A, Hillebrands B, Slavin A N 2006 Nature 443 430

    [42]

    Maksimov A A, Bacher G, McDonald A, Kulakovskii V D, Forchel A, Becker C R, Landwehr G, Molenkamp L W 2000 Phys. Rev. B: Condens. Matter 62 R7767

    [43]

    Seufert J, Bacher G, Scheibner M, Forchel A, Lee S, Dobrowolska M, Furdyna J K 2001 Phys. Rev. Lett. 88 027402

    [44]

    Sun L, Chen Z, Ren Q, Yu K, Bai L, Zhou W, Xiong H, Zhu Z Q, Shen X 2008 Phys. Rev. Lett. 100 156403

    [45]

    Xie W, Dong H, Zhang S, Sun L, Zhou W, Ling Y, Lu J, Shen X, Chen Z 2012 Phys. Rev. Lett. 108 166401

    [46]

    Liu R, Pan A, Fan H, Wang F, Shen Z, Yang G, Xie S, Zou B 2007 J. Phys.: Condens. Matter 19 136206

    [47]

    Leung Y H, Kwok W M, Djurišić A B, Phillips D L, Chan W K 2005 Nanotechnology 16 579

    [48]

    Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov G V, Hänsch T W, Bloch I 2004 Nature 429 277

    [49]

    Kinoshita T, Wenger T, Weiss D S 2004 Science 305 1125

    [50]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691

    [51]

    Kamran M A, Liu R, Shi L, Li Z, Marzi T, Schöppner C, Farle M, Zou B S 2014 Nanotechnology 25 385201

    [52]

    Kamran M A, Liu R, Shi L, Zou B S, Zhang Q 2013 J. Phys. Chem. C 117 17777

    [53]

    Zuo T, Sun Z, Zhao Y, Jiang X, Gao X 2010 J. Am. Chem. Soc. 132 6618

    [54]

    Pradhan N, Peng X 2007 J. Am. Chem. Soc. 129 3339

    [55]

    Hazarika A, Layek A, De S, Nag A, Debnath S, Mahadevan P, Chowdhury A, Sarma D D 2013 Phys. Rev. Lett. 110 267401

    [56]

    Erwin S C, Zu L J, Haftel M I, Efros A L, Kennedy T A, Norris D J 2005 Nature 436 91

    [57]

    Yang G, Xu G, Chen B, Zou S, Liu R, Zhong H, Zou B 2013 Chem. Mater. 25 3260

    [58]

    Bhattacharyya S, Estrin Y, Rich D H, Zitoun D, Koltypin Y, Gedanken A 2010 J. Phys. Chem. C 114 22002

    [59]

    Gumlich H E, Moser R, Neumann E 1967 Phys. Status Solidi (b) 24 K13

    [60]

    Nag A, Cherian R, Mahadevan P, Gopal A V, Hazarika A, Mohan A, Vengurlekar A S, Sarma D D 2010 J. Phys. Chem. C 114 18323

    [61]

    Cui X Y, Delley B, Freeman A J, Stampfl C 2007 Phys. Rev. B: Condens. Matter 76 045201

    [62]

    Durst A C, Bhatt R N, Wolff P A 2002 Phys. Rev. B: Condens. Matter 65 235205

    [63]

    Wojtowicz T, Koleśnik S, Miotkowski I, Furdyna J K 1993 Phys. Rev. Lett. 70 2317

    [64]

    Beaulac R, Feng Y, May J W, Badaeva E, Gamelin D R, Li X 2011 Phys. Rev. B: Condens. Matter 84 195324

    [65]

    Delikanli S, He S, Qin Y, Zhang P, Zeng H, Zhang H, Swihart M 2008 Appl. Phys. Lett. 93 132501

    [66]

    Kisliuk P, Chang N C, Scott P L, Pryce M H L 1969 Phys. Rev. 184 367

    [67]

    Spano F C, Silva C 2014 Annu. Rev. Phys. Chem. 65 477

    [68]

    Muhammad A K, Zhang Y Y, Liu R B, Shi L J, Zou B S 2014 Chin. Phys. Lett. 31 067802

    [69]

    Zou S, Kamran M A, Shi L J, Liu R B, Guo S, Kavokin A, Zou B S 2016 ACS Photon. 3 1809

    [70]

    Bonanni A, Navarro-Quezada A, Li T, Wegscheider M, Matěj Z, Holy V, Lechner R T, Bauer G, Rovezzi M, D'Acapito F, Kiecana M, Sawicki M, Dietl T 2008 Phys. Rev. Lett. 101 135502

    [71]

    Zhang Y B, Assadi M H N, Li S 2009 J. Phys.: Condens. Matter 21 175802

    [72]

    Oka Y, Shen J, Takabayashi K, Takahashi N, Mitsu H, Souma I, Pittini R 1999 J. Lumin. 83 83

    [73]

    Godlewski M, Yatsunenko S, Khachapuridze A, Ivanov V Y, Gołacki Z, Karczewski G, Bergman P J, Klar P J, Heimbrodt W, Phillips M R 2004 J. Alloy. Compd. 380 45

    [74]

    Chang K, Peeters F M 2003 Phys. Rev. B: Condens. Matter 68 205320

    [75]

    Katayama K, Miyajima K, Ashida M, Itoh T 2012 J. Phys.: Condens. Matter 24 325801

    [76]

    Dey A, Yarlagadda S 2014 Phys. Rev. B: Condens. Matter 89 064311

    [77]

    Butov L V, Filin A I 1998 Phys. Rev. B: Condens. Matter 58 1980

    [78]

    Snoke D W 2011 Adv. Condens. Matter Phys. 2011 938609

    [79]

    Moskalenko S A, Liberman M A, Dumanov E V 2011 J. Nanoelectron. Optoelectron. 6 393

    [80]

    Hague J P, Kornilovitch P E 2010 Phys. Rev. B: Condens. Matter 82 094301

    [81]

    Hague J P, Kornilovitch P E, Samson J H, Alexandrov A S 2007 Phys. Rev. Lett. 98 037002

    [82]

    Voigt J, Spiegelberg F, Senoner M 1979 Phys. Status Solidi 91 189

    [83]

    Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D N, Khajavikhan M 2018 Science 359 4005

    [84]

    Bliokh K Y, Rodríguez-Fortuño F J, Nori F, Zayats A V 2015 Nature Photon. 9 796

  • [1] Liu Hai-Yang, Fan Xiao-Yue, Fan Hao-Jie, Li Yang-Yang, Tang Tian-Hong, Wang Gang. Influence of defects induced by plasma-bombarded monolayer WS2 on optical properties of bound excitons. Acta Physica Sinica, 2024, 73(13): 137802. doi: 10.7498/aps.73.20240475
    [2] Duan Xiu-Ming, Yi Zhi-Jun. Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton. Acta Physica Sinica, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [3] Hoo Qian-Ying, Xu Yang. Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application. Acta Physica Sinica, 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [4] Wang Wen-Juan, Wang Hai-Long, Gong Qian, Song Zhi-Tang, Wang Hui, Feng Song-Lin. External electric field effect on exciton binding energy in InGaAsP/InP quantum wells. Acta Physica Sinica, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [5] Li Wen-Sheng, Sun Bao-Quan. Optical transition of the charged excitons in InAs single quantum dots. Acta Physica Sinica, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [6] Wang Yan-Wen, Wu Hua-Rui. Exciton states and optical properties in zinc-blende GaN/AlGaN quantum dot. Acta Physica Sinica, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [7] Shen Man, Zhang Liang, Liu Jian-Jun. Effects of magneic field and quantum dot size on properties of exciton. Acta Physica Sinica, 2012, 61(21): 217103. doi: 10.7498/aps.61.217103
    [8] Deng Yan-Ping, Lü Bin-Bin, Tian Qiang. Excitons and effects of phonons on excitons in asymmetric square quantum well. Acta Physica Sinica, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [9] Sun Zhen, An Zhong, Li Yuan, Liu Wen, Liu De-Sheng, Xie Shi-Jie. Study on the process of collision between a polaron and a triplet exciton in conjugated polymers. Acta Physica Sinica, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [10] Jin Hua, Liu Shu, Zhang Zhen-Zhong, Zhang Li-Gong, Zheng Zhu-Hong, Shen De-Zhen. Exciton tunnelling in (CdZnTe,ZnSeTe)/ZnTe complex quantum wells. Acta Physica Sinica, 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [11] Zhang Hong, Liu Lei, Liu Jian-Jun. Binding energies of excitons in symmetrical GaAs/Al0.3Ga0.7As double quantum wells. Acta Physica Sinica, 2007, 56(1): 487-490. doi: 10.7498/aps.56.487
    [12] Xiong Wen, Zhao Hua. Calculation of exciton energies and binding energies in ZnO film. Acta Physica Sinica, 2007, 56(2): 1061-1065. doi: 10.7498/aps.56.1061
    [13] Zheng Rui-Lun. Energy of excitons and probability distribution of electrons in columned composite system composed of quantum dots and quantum wires. Acta Physica Sinica, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [14] Wang Fang-Zhen, Chen Zhang-Hai, Liu Yi, Huang Shao-Hua, Bai Li-Hui, Shen Xue-Chu. Exciton transfer and the optical properties of two types of quantum islands (dots) in ultrathin CdSe/ZnSe layers. Acta Physica Sinica, 2005, 54(1): 434-438. doi: 10.7498/aps.54.434
    [15] Dong Qing-Rui, Niu Zhi-Chuan. Excitonic energy of vertically stacked self-assmbled InAs quantum dots. Acta Physica Sinica, 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [16] Jin Hua, Zhang Li-Gong, Zheng Zhu-Hong, Kong Xiang-Gui, An Li-Nan, Shen De-Zhen. Exciton tunnelling in ZnCdSe quantum well/CdSe quantum dots. Acta Physica Sinica, 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
    [17] Xu Quan, Tian Qiang. The interaction of excitons with phonons and solution of breathers in one-dimensional molecular chain. Acta Physica Sinica, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [18] Zhang Shu-Dong, Li Hai-Yang. Formation and emission spectra of C2 swan band during the reaction of laser ablating target of aluminum with CF4 beam. Acta Physica Sinica, 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
    [19] Liu Wen-Kai, Lin Shi-Ming, Zhang Cun-Shan. . Acta Physica Sinica, 2002, 51(9): 2052-2056. doi: 10.7498/aps.51.2052
    [20] CHEN KE, ZHAO ER-HAI, SUN XIN, FU ROU-LI. THE POLARIZABILITY OF EXCITON AND BIEXCITON IN POLYMER(ANALYTICAL CALCULATION). Acta Physica Sinica, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
Metrics
  • Abstract views:  7929
  • PDF Downloads:  218
  • Cited By: 0
Publishing process
  • Received Date:  22 June 2018
  • Accepted Date:  25 September 2018
  • Published Online:  05 January 2019

/

返回文章
返回
Baidu
map