Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application

Hoo Qian-Ying Xu Yang

Citation:

Detection of dielectric screening effect by excitons in two-dimensional semiconductors and its application

Hoo Qian-Ying, Xu Yang
PDF
HTML
Get Citation
  • Atomically thin transition metal dichalcogenides (TMDCs) like MX2 (M = W or Mo, X = S or Se) are well-known examples of two-dimensional (2D) semiconductors. They have attracted wide and long-lasting attention due to the strong light-matter interaction and unique spin-valley locking characteristics. In the 2D limit, the reduced dielectric screening significantly enhances the Coulomb interaction. The optical properties of monolayer TMDCs are thus dominated by excitons, the tightly bound electron-hole pairs. In this work, we briefly overview the history and recent research progress of optical spectroscopy studies on TMDCs. We first introduce the layer-dependent band structure and the corresponding modifications on optical transitions, and briefly mention the effects of external magnetic fields and the charge doping on excitons. We then introduce a novel sensing technique enabled by the sensitivity of excitons to the dielectric environment. The exciton excited states (Rydberg states) observed in monolayer TMDCs have large Bohr radii (> few nm), where the electric field lines between electron-hole pairs well extends out of the material. Hence the Coulomb interaction (which affects the quasiparticle band gap and exciton binding energies) in the monolayer TMDC is sensitive to the dielectric environment, making the excitons in 2D semiconductor an efficient quantum sensor in probing dielectric properties of the surroundings. The method is of high spatial resolution and only diffraction limited. We enumerate the applications of monolayer WSe2 dielectric sensor in detecting the secondary Dirac point of graphene induced by the graphene-hBN superlattice potential, as well as the fractional correlated insulating states emerging in WS2/WSe2 moiré superlattices. Meanwhile, a unified framework for describing the many-body interactions and dynamical screenings in the system is still lacking. Future theoretical and experimental efforts are needed for a complete understanding. Finally, we further discuss the perspectives and potential applications of this non-destructive and efficient dielectric sensing method.
      Corresponding author: Xu Yang, yang.xu@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1401300) and the National Natural Science Foundation of China (Grant No. 12174439).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Geim A K 2009 Science 324 1530Google Scholar

    [4]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [5]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [6]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [7]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [8]

    Xu X, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343Google Scholar

    [9]

    Mak K F, Xiao D, Shan J 2018 Nat. Photonics 12 451Google Scholar

    [10]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [11]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [12]

    Sidler M, Back P, Cotlet O, Srivastava A, Fink T, Kroner M, Demler E, Imamoglu A 2017 Nat. Phys. 13 255

    [13]

    Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W, Xu X 2013 Nat. Commun. 4 2498Google Scholar

    [14]

    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, Shan J 2013 Nat. Mater. 12 207Google Scholar

    [15]

    Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091Google Scholar

    [16]

    Raja A, Chaves A, Yu J, Arefe G, Hill H M, Rigosi A F, Berkelbach T C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus L E, Heinz T F, Reichman D R, Chernikov A 2017 Nat. Commun. 8 15251Google Scholar

    [17]

    Qiu Z, Trushin M, Fang H, Verzhbitskiy I, Gao S, Laksono E, Yang M, Lyu P, Li J, Su J, Telychko M, Watanabe K, Taniguchi T, Wu J, Neto A H C, Yang L, Eda G, Adam S, Lu J 2019 Sci. Adv. 5 eaaw2347Google Scholar

    [18]

    Xu Y, Horn C, Zhu J, Tang Y, Ma L, Li L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2021 Nat. Mater. 20 645Google Scholar

    [19]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [20]

    Dickinson R G, Pauling L 1923 J. Am. Chem. Soc. 45 1466Google Scholar

    [21]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193Google Scholar

    [22]

    Frindt R F, Yoffe A D 1963 Proc. R. Soc. A 273 69

    [23]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [24]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [25]

    Jin W, Yeh P C, Zaki N, Zhang D, Sadowski J T, Al-Mahboob A, Van Der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood R M 2013 Phys. Rev. Lett. 111 106801Google Scholar

    [26]

    Liu Y, Stradins P, Wei S H 2016 Sci. Adv. 2 1600069Google Scholar

    [27]

    Shree S, Paradisanos I, Marie X, Robert C, Urbaszek B 2021 Nat. Rev. Phys. 3 39

    [28]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [29]

    Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [30]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [31]

    Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Tartakovskii A I, Novoselov K S 2015 Nat. Mater. 14 301Google Scholar

    [32]

    Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H, Xu X 2014 Nat. Nanotechnol. 9 268Google Scholar

    [33]

    He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X, Lu C Y, Pan J W 2015 Nat. Nanotechnol. 10 497Google Scholar

    [34]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [35]

    Zhu Z Y, Cheng Y C, Schwingenschlögl U 2011 Phys. Rev. B 84 153402Google Scholar

    [36]

    Horng J, Martin E W, Chou Y H, Courtade E, Chang T C, Hsu C Y, Wentzel M H, Ruth H G, Lu T C, Cundiff S T, Wang F, Deng H 2020 Phys. Rev. Appl. 14 024009Google Scholar

    [37]

    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar

    [38]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [39]

    Xiao D, Liu G Bin, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [40]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494Google Scholar

    [41]

    Sallen G, Bouet L, Marie X, Wang G, Zhu C R, Han W P, Lu Y, Tan P H, Amand T, Liu B L, Urbaszek B 2012 Phys. Rev. B 86 081301Google Scholar

    [42]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490Google Scholar

    [43]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643Google Scholar

    [44]

    Cai T, Yang S A, Li X, Zhang F, Shi J, Yao W, Niu Q 2013 Phys. Rev. B 88 115140Google Scholar

    [45]

    Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148Google Scholar

    [46]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoglu A 2015 Nat. Phys. 11 141Google Scholar

    [47]

    Hill H M, Rigosi A F, Roquelet C, Chernikov A, Berkelbach T C, Reichman D R, Hybertsen M S, Brus L E, Heinz T F 2015 Nano Lett. 15 2992Google Scholar

    [48]

    Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S, Heinz T F 2014 Phys. Rev. Lett. 113 076802Google Scholar

    [49]

    Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Del Águila A G, Christianen P C M, Bratschitsch R, Schüller C, Korn T 2016 Nat. Commun. 7 12715Google Scholar

    [50]

    Shang J, Shen X, Cong C, Peimyoo N, Cao B, Eginligil M, Yu T 2015 ACS Nano 9 647Google Scholar

    [51]

    Efimkin D K, MacDonald A H 2017 Phys. Rev. B 95 035417Google Scholar

    [52]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [53]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [54]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [55]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [56]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [57]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [58]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [59]

    Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, Wang F 2020 Nature 579 56Google Scholar

    [60]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [61]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [62]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [63]

    Beechem T E, Ohta T, Diaconescu B, Robinson J T 2014 ACS Nano 8 1655Google Scholar

    [64]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [65]

    Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Zeldov E 2020 Nature 581 47Google Scholar

    [66]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, Leroy B J 2012 Nat. Phys. 8 382Google Scholar

    [67]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [68]

    Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [69]

    Liu E, Taniguchi T, Watanabe K, Gabor N M, Cui Y T, Lui C H 2021 Phys. Rev. Lett. 127 037402Google Scholar

  • 图 1  TMDCs的结构和电子性质 (a) TMDCs 2H, 1T, 1T'相的晶体结构和层间堆叠序示意图; (b) 基于密度泛函理论计算的2H-MoS2块材, 四层、两层和单层的能带结构[23] ; (c) 6种常见TMDCs的能带排布[26]; (d) 单层MoS2的价带劈裂示意图, 其中红色代表自旋向上, 蓝色代表自旋向下; (e) TMDCs中的激子示意图

    Figure 1.  Structure and properties of TMDCs: (a) Atomic structure and stacking order of TMDCs in their trigonal prismatic (2H), distorted octahedral (1T) and dimerized (1T') phases; (b) calculated band structure evolution for 2H-MoS2 with decreasing thicknesses[23]; (c) calculated band alignment between monolayer TMDCs[26]; (d) schematic spin splitting of the bands at the K and K' points on the corners of the Brillouin zone of monolayer MoS2, where red and blue colors indicate up and down spin polarization, respectively; (e) schematic illustration of the exciton formation in TMDCs.

    图 2  层数依赖的MoS2光致发光光谱[24] (a) 单层和双层MoS2的光致发光光谱, 插图是1—6层MoS2发光的量子产率; (b) 1—6层MoS2的激子共振峰(光学带隙)能量变化

    Figure 2.  Thickness-dependent PL of MoS2[24]: (a) PL spectra for mono- and bilayer MoS2 samples, where the inset is PL quantum yield of MoS2 ranging from 1 to 6 layers; (b) energy variation of exciton resonance peak (optical band gap) energy of 1–6 layers of MoS2.

    图 3  TMDCs的谷光学选择定则 (a)零磁场下的能带示意图及谷光学选择定则[41]; (b)谷对比的MoS2偏振光致发光光谱; (c)面外垂直磁场下的能带示意图; (d)外加磁场下谷对比的WS2反射谱[43]

    Figure 3.  Optical selection rules of TMDCs: (a) Schematic illustrations of energy band and selection rules for valley-selective optical transitions at B = 0; (b) polarized photoluminescence spectra of valley-contrasted MoS2 [41]; (c) schematic diagram of the energy bands under the out-of-plane vertical magnetic field; (d) valley-contrast reflection contrast spectra of WS2 under external magnetic fields[43]

    图 4  TMDCs的激子里德伯态 (a)理想二维半导体的光吸收示意图[11]; (b)单层WS2的微分反射谱[48]; (c)实验及计算的WS2激子里德伯态共振能量[48]

    Figure 4.  Exciton Rydberg states of monolayer TMDCs: (a) Schematic illustration of light absorption of ideal 2D semiconductors[11]; (b) reflection contrast derivative of monolayer WS2 [48]; (c) experimentally extracted and calculated resonance energies of exciton Rydberg states[48].

    图 5  栅压对二维激子的调控 (a)栅压调控的示意图; (b)吸引极化子和排斥极化子的示意图; (c)理论计算的忽略费米海(上)和考虑费米海(下)情况下的光导谱[51]; (d)实验测得的1.6 K下栅压调控的单层WSe2光致发光光谱; (e)实验测得的1.6 K下栅压调控的d单层WSe2反射谱

    Figure 5.  Electrostatic charging effects of 2D excitons: (a) Schematic illustration of electrostatic gating; (b) schematic diagram of attractive polarons (AP) and repulsive polarons (RP); (c) calculated optical conductivity of excitons without (top panel) and within (bottom panel) Fermi sea[51]; (d) photoluminescence (PL) of monolayer WSe2 as a function of gate voltage and photon energy at a temperature of 1.6 K; (e) reflection contrast of monolayer WSe2 as a function of gate voltage and photon energy at a temperature of 1.6 K.

    图 6  TMDCs在不同介电环境下的反射谱[16] (a)介电环境对二维TMDCs带隙的调制示意图; (b)双层石墨烯对单层WS2反射谱的调制; (c) 1s和2s激子能量间距与石墨烯层数的关系; (d)不同衬底组合下的1s激子共振能量及激子束缚能

    Figure 6.  Reflection contrast of TMDCs in different dielectric environment[16]: (a) Schematic illustration of bandgap renormalization of 2D TMDCs; (b) reflection contrast spectra of monolayer WS2 with and without the neighboring 2-layer-graphene; (c) energy separation between 1s and 2s excitons with increasing thickness of the neighboring graphene; (d) 1 s resonance energy and exciton binding energy with different neighboring materials.

    图 7  动态介电屏蔽下的TMDCs[17] (a)扫描隧道谱测量的ReSe2带隙随栅压的变化; (b) ReSe2反射谱中随栅压几乎不变的激子共振能量; (c)扫描隧道谱测得的准粒子带隙(Eg), 反射谱测得的光学带隙(Eopt)以及由此计算出的激子束缚能(Eb)随栅压的变化; (d)石墨烯不同掺杂程度下ReSe2的激子和能带示意图

    Figure 7.  TMDCs under dynamic screening[17]: (a) Bandgap evolution of ReSe2 with gate voltages obtained by scaning tunnelling spectroscopy; (b) nearly gate-independent exciton resonance energy of ReSe2; (c) evolution of bandgap (Eg), optical resonance energy (Eopt) and binding energy (Eb) with gate voltage; (d) schematic band structure of dynamically screened ReSe2 with the neighboring graphene at different doping levels.

    图 8  石墨烯-氮化硼异质结的激子探测[18] (a) WSe2激子探测石墨烯-氮化硼莫尔超晶格的器件结构(上), 探测原理示意图(中)及周期性衬底对WSe2带隙宽度的调控(下)示意图; (b) 石墨烯中载流子浓度变化对WSe2反射谱的调制; (c) 图(b)中的带隙能量与栅压和载流子浓度平方根(插图)的关系; (d) 当石墨烯与上层氮化硼零度排列形成莫尔超晶格时, 石墨烯中载流子浓度变化对WSe2反射谱的调制; (e) 石墨烯二阶狄拉克点(左)和伴线(右)的来源示意图

    Figure 8.  Dielectric sensing of graphene/hBN heterostructures[18]: (a) Device structure of the graphene/hBN heterostructure with WSe2 dielectric sensor (top), illustration of creating spatially periodic electronic band structure in monolayer WSe2 by dielectric screening (middle), and bandgap (Eg) of WSe2 modulated by a substrate with periodic dielectric constant (bottom); (b) gate-dependent reflection contrast spectrum of WSe2 sensor under dynamic screening of the neighboring graphene; (c) the extracted quasiparticle band gap Eg of monolayer WSe2 in (b); (d) gate-dependent reflection contrast spectrum of WSe2 sensor with graphene/hBN moiré superlattice; (e) origin of the secondary Dirac point (left panel) and replicas (right panel) in (d).

    图 9  WSe2/WS2莫尔超晶格的激子探测[19] (a) WSe2激子探测WSe2/WS2样品的器件结构示意图; (b)在没有WSe2探测层的区域, WSe2/WS2样品自身的反射谱; (c)有WSe2探测层区域的反射谱; (d)图(c)中2s区域体现出的一系列关联绝缘态; (e)几种分数填充的示意图

    Figure 9.  Dielectric sensing of WSe2/WS2 moiré superlattice[19]: (a) Device structure and electric circuitry of the WSe2/WS2 moiré heterobilayer with WSe2 dielectric sensor; (b) optical response of the WSe2/WS2 moiré heterobilayer without WSe2 dielectric sensor; (c) optical response of the WSe2/WS2 moiré heterobilayer and WSe2 sensor; (d) abundance of correlated insulating states in WSe2/WS2 moiré heterobilayer revealed by 2s resonance of WSe2; (e) schematic illustration of charge-order configuration in correlated insulating states.

    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [3]

    Geim A K 2009 Science 324 1530Google Scholar

    [4]

    Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K 2008 Phys. Rev. Lett. 100 016602Google Scholar

    [5]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [6]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [7]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [8]

    Xu X, Yao W, Xiao D, Heinz T F 2014 Nat. Phys. 10 343Google Scholar

    [9]

    Mak K F, Xiao D, Shan J 2018 Nat. Photonics 12 451Google Scholar

    [10]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [11]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [12]

    Sidler M, Back P, Cotlet O, Srivastava A, Fink T, Kroner M, Demler E, Imamoglu A 2017 Nat. Phys. 13 255

    [13]

    Ross J S, Wu S, Yu H, Ghimire N J, Jones A M, Aivazian G, Yan J, Mandrus D G, Xiao D, Yao W, Xu X 2013 Nat. Commun. 4 2498Google Scholar

    [14]

    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, Shan J 2013 Nat. Mater. 12 207Google Scholar

    [15]

    Ugeda M M, Bradley A J, Shi S F, da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, Wang F, Louie S G, Crommie M F 2014 Nat. Mater. 13 1091Google Scholar

    [16]

    Raja A, Chaves A, Yu J, Arefe G, Hill H M, Rigosi A F, Berkelbach T C, Nagler P, Schüller C, Korn T, Nuckolls C, Hone J, Brus L E, Heinz T F, Reichman D R, Chernikov A 2017 Nat. Commun. 8 15251Google Scholar

    [17]

    Qiu Z, Trushin M, Fang H, Verzhbitskiy I, Gao S, Laksono E, Yang M, Lyu P, Li J, Su J, Telychko M, Watanabe K, Taniguchi T, Wu J, Neto A H C, Yang L, Eda G, Adam S, Lu J 2019 Sci. Adv. 5 eaaw2347Google Scholar

    [18]

    Xu Y, Horn C, Zhu J, Tang Y, Ma L, Li L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2021 Nat. Mater. 20 645Google Scholar

    [19]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [20]

    Dickinson R G, Pauling L 1923 J. Am. Chem. Soc. 45 1466Google Scholar

    [21]

    Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193Google Scholar

    [22]

    Frindt R F, Yoffe A D 1963 Proc. R. Soc. A 273 69

    [23]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [24]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [25]

    Jin W, Yeh P C, Zaki N, Zhang D, Sadowski J T, Al-Mahboob A, Van Der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood R M 2013 Phys. Rev. Lett. 111 106801Google Scholar

    [26]

    Liu Y, Stradins P, Wei S H 2016 Sci. Adv. 2 1600069Google Scholar

    [27]

    Shree S, Paradisanos I, Marie X, Robert C, Urbaszek B 2021 Nat. Rev. Phys. 3 39

    [28]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [29]

    Lee C H, Lee G H, Van Der Zande A M, Chen W, Li Y, Han M, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [30]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [31]

    Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney A P, Gholinia A, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Tartakovskii A I, Novoselov K S 2015 Nat. Mater. 14 301Google Scholar

    [32]

    Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H, Xu X 2014 Nat. Nanotechnol. 9 268Google Scholar

    [33]

    He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X, Lu C Y, Pan J W 2015 Nat. Nanotechnol. 10 497Google Scholar

    [34]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [35]

    Zhu Z Y, Cheng Y C, Schwingenschlögl U 2011 Phys. Rev. B 84 153402Google Scholar

    [36]

    Horng J, Martin E W, Chou Y H, Courtade E, Chang T C, Hsu C Y, Wentzel M H, Ruth H G, Lu T C, Cundiff S T, Wang F, Deng H 2020 Phys. Rev. Appl. 14 024009Google Scholar

    [37]

    Zhang Y, Chang T R, Zhou B, Cui Y T, Yan H, Liu Z, Schmitt F, Lee J, Moore R, Chen Y, Lin H, Jeng H T, Mo S K, Hussain Z, Bansil A, Shen Z X 2014 Nat. Nanotechnol. 9 111Google Scholar

    [38]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [39]

    Xiao D, Liu G Bin, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [40]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494Google Scholar

    [41]

    Sallen G, Bouet L, Marie X, Wang G, Zhu C R, Han W P, Lu Y, Tan P H, Amand T, Liu B L, Urbaszek B 2012 Phys. Rev. B 86 081301Google Scholar

    [42]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490Google Scholar

    [43]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643Google Scholar

    [44]

    Cai T, Yang S A, Li X, Zhang F, Shi J, Yao W, Niu Q 2013 Phys. Rev. B 88 115140Google Scholar

    [45]

    Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148Google Scholar

    [46]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoglu A 2015 Nat. Phys. 11 141Google Scholar

    [47]

    Hill H M, Rigosi A F, Roquelet C, Chernikov A, Berkelbach T C, Reichman D R, Hybertsen M S, Brus L E, Heinz T F 2015 Nano Lett. 15 2992Google Scholar

    [48]

    Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan O B, Reichman D R, Hybertsen M S, Heinz T F 2014 Phys. Rev. Lett. 113 076802Google Scholar

    [49]

    Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A, Del Águila A G, Christianen P C M, Bratschitsch R, Schüller C, Korn T 2016 Nat. Commun. 7 12715Google Scholar

    [50]

    Shang J, Shen X, Cong C, Peimyoo N, Cao B, Eginligil M, Yu T 2015 ACS Nano 9 647Google Scholar

    [51]

    Efimkin D K, MacDonald A H 2017 Phys. Rev. B 95 035417Google Scholar

    [52]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [53]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [54]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [55]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [56]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [57]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [58]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [59]

    Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, Wang F 2020 Nature 579 56Google Scholar

    [60]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [61]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [62]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [63]

    Beechem T E, Ohta T, Diaconescu B, Robinson J T 2014 ACS Nano 8 1655Google Scholar

    [64]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [65]

    Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Zeldov E 2020 Nature 581 47Google Scholar

    [66]

    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, Leroy B J 2012 Nat. Phys. 8 382Google Scholar

    [67]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [68]

    Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [69]

    Liu E, Taniguchi T, Watanabe K, Gabor N M, Cui Y T, Lui C H 2021 Phys. Rev. Lett. 127 037402Google Scholar

  • [1] Liu Hai-Yang, Fan Xiao-Yue, Fan Hao-Jie, Li Yang-Yang, Tang Tian-Hong, Wang Gang. Influence of defects induced by plasma-bombarded monolayer WS2 on optical properties of bound excitons. Acta Physica Sinica, 2024, 73(13): 137802. doi: 10.7498/aps.73.20240475
    [2] Duan Xiu-Ming, Yi Zhi-Jun. Theoretical study on regulatory mechanism of dielectric environmental screening effects on binding energy of two-dimensional InX (X = Se, Te) exciton. Acta Physica Sinica, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [3] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [4] Zou Shuang-Yang,  Muhammad Arshad,  Yang Gao-Ling,  Liu Rui-Bin,  Shi Li-Jie,  Zhang Yong-You,  Jia Bao-Hua,  Zhong Hai-Zheng,  Zou Bing-Suo. Excitonic magnetic polarons and their luminescence in II-VI diluted magnetic semiconductor micro-nanostructures. Acta Physica Sinica, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [5] Zhou Yu-Zhi. Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system. Acta Physica Sinica, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [6] Wang Wen-Juan, Wang Hai-Long, Gong Qian, Song Zhi-Tang, Wang Hui, Feng Song-Lin. External electric field effect on exciton binding energy in InGaAsP/InP quantum wells. Acta Physica Sinica, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [7] Li Wen-Sheng, Sun Bao-Quan. Optical transition of the charged excitons in InAs single quantum dots. Acta Physica Sinica, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [8] Wang Yan-Wen, Wu Hua-Rui. Exciton states and optical properties in zinc-blende GaN/AlGaN quantum dot. Acta Physica Sinica, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [9] Shen Man, Zhang Liang, Liu Jian-Jun. Effects of magneic field and quantum dot size on properties of exciton. Acta Physica Sinica, 2012, 61(21): 217103. doi: 10.7498/aps.61.217103
    [10] Deng Yan-Ping, Lü Bin-Bin, Tian Qiang. Excitons and effects of phonons on excitons in asymmetric square quantum well. Acta Physica Sinica, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [11] Sun Zhen, An Zhong, Li Yuan, Liu Wen, Liu De-Sheng, Xie Shi-Jie. Study on the process of collision between a polaron and a triplet exciton in conjugated polymers. Acta Physica Sinica, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [12] Jin Hua, Liu Shu, Zhang Zhen-Zhong, Zhang Li-Gong, Zheng Zhu-Hong, Shen De-Zhen. Exciton tunnelling in (CdZnTe,ZnSeTe)/ZnTe complex quantum wells. Acta Physica Sinica, 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [13] Zhang Hong, Liu Lei, Liu Jian-Jun. Binding energies of excitons in symmetrical GaAs/Al0.3Ga0.7As double quantum wells. Acta Physica Sinica, 2007, 56(1): 487-490. doi: 10.7498/aps.56.487
    [14] Xiong Wen, Zhao Hua. Calculation of exciton energies and binding energies in ZnO film. Acta Physica Sinica, 2007, 56(2): 1061-1065. doi: 10.7498/aps.56.1061
    [15] Zheng Rui-Lun. Energy of excitons and probability distribution of electrons in columned composite system composed of quantum dots and quantum wires. Acta Physica Sinica, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [16] Dong Qing-Rui, Niu Zhi-Chuan. Excitonic energy of vertically stacked self-assmbled InAs quantum dots. Acta Physica Sinica, 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [17] Jin Hua, Zhang Li-Gong, Zheng Zhu-Hong, Kong Xiang-Gui, An Li-Nan, Shen De-Zhen. Exciton tunnelling in ZnCdSe quantum well/CdSe quantum dots. Acta Physica Sinica, 2004, 53(9): 3211-3214. doi: 10.7498/aps.53.3211
    [18] Xu Quan, Tian Qiang. The interaction of excitons with phonons and solution of breathers in one-dimensional molecular chain. Acta Physica Sinica, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [19] Liu Wen-Kai, Lin Shi-Ming, Zhang Cun-Shan. . Acta Physica Sinica, 2002, 51(9): 2052-2056. doi: 10.7498/aps.51.2052
    [20] CHEN KE, ZHAO ER-HAI, SUN XIN, FU ROU-LI. THE POLARIZABILITY OF EXCITON AND BIEXCITON IN POLYMER(ANALYTICAL CALCULATION). Acta Physica Sinica, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
Metrics
  • Abstract views:  12710
  • PDF Downloads:  782
  • Cited By: 0
Publishing process
  • Received Date:  08 January 2022
  • Accepted Date:  07 February 2022
  • Available Online:  28 February 2022
  • Published Online:  20 June 2022

/

返回文章
返回
Baidu
map