Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of uniaxial strain on Hole mobility of Sb2Se3

Zhang Leng Shen Yu-Hao Tang Chao-Yang Wu Kong-Ping Zhang Peng-Zhan Liu Fei Hou Ji-Wei

Citation:

Effect of uniaxial strain on Hole mobility of Sb2Se3

Zhang Leng, Shen Yu-Hao, Tang Chao-Yang, Wu Kong-Ping, Zhang Peng-Zhan, Liu Fei, Hou Ji-Wei
PDF
HTML
Get Citation
  • Antimony selenide (Sb2Se3) is a simple-phase, element-rich, and economically friendly material for solar cell absorption layers, with broad application prospects. However, the weak conductivity of Sb2Se3 has become a significant factor limiting the performance of solar cell devices. Carrier mobility is an important electrical parameter for both materials and devices, and strain can change carrier mobility. Therefore, studying the effect of strain on the carrier mobility of Sb2Se3 is of practical significance. In this work, using density functional theory and deformation potential theory, we systematically investigate the influence of uniaxial strain on the band structure, bandgap width, iso-surface, and effective mass of Sb2Se3. We analyze the effects of three types of uniaxial strains along the x-, y-, and z-direction on the carrier mobilities along the x-, y-, and z-direction, which are denoted by μx, μy, and μz, respectively. It is found that under these strains, the valence band maximum (VBM) position of Sb2Se3 remains unchanged, and the bandgap decreases with the increase of strain along the y- and z-direction, while it increases along the x-direction. The variation in bandgap may be related to the coupling strength between the Sb-5p orbital and Se-4p orbital of the conduction band minimum (CBM). For fully relaxed Sb2Se3, its iso-surface exhibits a distorted cylindrical shape, with low dispersion along the z-axis and high dispersion along the x- and y-axis, where μx is greater than μy and μz, suggesting that the x-direction should be considered as the specific growth direction for Sb2Se3 experimentally. When the strain is applied along the x- and z-direction, μx gradually increases with strain increasing, while it decreases when the strain is applied along the y-direction. Taking into account the combined effects of strain on bandgap, iso-surface, density of states, and mobility, this study suggests that the optimal performance of Sb2Se3 solar cell absorber layer material can be realized when the strain is applied along the y-axis, with a compressive strain of 3%.
      Corresponding author: Hou Ji-Wei, jwhou@njtech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61904071, 52002170), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX23_1429), and the Qing Lan Project of Jiangsu Provincial University, China.
    [1]

    Green M A, Dunlop E D, Yoshita M 2023 Prog. Photovolt. Res. Appl. 31 651Google Scholar

    [2]

    Chen C, Li K H, Tang J 2022 Sol. RRL 6 2200094Google Scholar

    [3]

    Zhang X, Li C, Sun K, Zhou J, Zhang Z 2021 Adv. Energy Mater. 11 2002614Google Scholar

    [4]

    薛丁江, 石杭杰, 唐江 2015 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [5]

    Zhao Y Q, Wang S Y, Li C, Che B, Chen X L, Chen H Y, Tang R F, Wang X M, Chen G L, Wang T, Gong J B, Chen T, Xiao X D, Li J M 2022 Energy Environ. Sci. 15 5118Google Scholar

    [6]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W Y, Schropp R, Mai Y H 2019 Nat. Commun. 10 125Google Scholar

    [7]

    Takagi S, Hoyt J L, Welser J J, Gibbons J F 1996 J. Appl. Phys. 80 1567Google Scholar

    [8]

    Welser J, Hoyt J L, Gibbons J F 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA 1992, December 13–16, 1992 p1000

    [9]

    宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英 2010 59 579Google Scholar

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2010 Acta Phys. Sin. 59 579Google Scholar

    [10]

    Jia W L, He Y, Cao Y L, Wang X M, Lin Z, Li W T, Xu M, Li E L 2022 Micro Nanostructures 168 207300Google Scholar

    [11]

    Datye I M, Daus A, Grady R W, Brenner K, Vaziri S, Pop E 2022 Nano Lett. 22 8052Google Scholar

    [12]

    Ge G X, Zhang Y W, Yan H X, Yang J M, Zhou L, Sui X J 2021 Appl. Surf. Sci. 538 148009Google Scholar

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [14]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Phys. Status Solidi B 248 700Google Scholar

    [15]

    Bardekn J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [16]

    Xi J Y, Long M Q, Tang L, Wang D, Shuai Z G 2012 Nanoscale 4 4348Google Scholar

    [17]

    El-Sayad E A, Moustafa A M, Marzouk S Y 2009 Physica B 404 1119Google Scholar

    [18]

    Kumar A, Ahluwalia P K 2013 Physica B 419 66Google Scholar

    [19]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, and Nayak S K 2006 Phys. Rev. B 74 035339Google Scholar

    [20]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [21]

    Kawamura M 2019 Comput. Phys. Commun. 239 197Google Scholar

    [22]

    Wang X W, Li Z Z, Kavanagh S R, Ganose A M, Walsh A 2022 Phys. Chem. Chem. Phys. 24 7195Google Scholar

    [23]

    Effective Mass Calculator for Semiconductors, Fonari A, Sutton Chttps://github.com/afonari/emc [2013-3-18]

    [24]

    Zhang B Y, Qian X F 2022 ACS Appl. Energy Mater. 5 492Google Scholar

    [25]

    Zhou Y, Wang L, Chen S Y, Qin S K, Liu X S, Chen Jie, Xue D J, Luo M, Cao Y Z, Cheng Y B, Sargent E H, Tang J 2015 Nat. Photonics 9 409Google Scholar

    [26]

    Chen C, Bobela D C, Yang Ye, Lu S C, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C, Tang J 2017 Front. Optoelectron. 10 18Google Scholar

  • 图 1  Sb2Se3的晶胞, 棕色球体代表阳离子锑, 绿色球体代表阴离子硒

    Figure 1.  Crystal structure of Sb2Se3 computational model, brown spheres represent cation antimony, and green spheres represent anion selenium.

    图 2  不同能带结构随εx的变化, 正号表示拉应变, 负号表示压应变, VBM与CBM均用红圈标注

    Figure 2.  The variation of energy band structure under different εx strains. Positive sign indicates tensile strain, and negative sign indicates compressive strain. The VBM and the CBM are marked with red circles.

    图 3  费米能级、VBM、CBM及带隙随应变的变化 (a)应变沿x方向; (b)应变沿y方向; (c)应变沿z方向

    Figure 3.  Variation of Fermi level, VBM, CBM and band gap with strain: (a) Strain along x direction; (b) strain along y direction; (c) strain along z direction.

    图 4  Sb2Se3价带顶下100 meV处的等能面的变化. 应变沿着x方向上 (a) εx = 0, (b) εx = –4.5%, (c) εx = +4.5%; 应变沿y方向上 (d) εy = –4.5%, (e) εy = +4.5%; 应变沿z方向上 (f) εz = –4.5%, (g) εz = +4.5%

    Figure 4.  Variation of the isosurface at 100 meV below VBM. The strain is applied along x direction: (a) εx = 0, (b) εx = –4.5%, and (c) εx = +4.5%. The strain is applied along y direction: (d) εy = –4.5% and (e) εy = +4.5%. The strain is applied along z direction: (f) εz = –4.5% and (g) εz = +4.5%.

    图 5  Sb2Se3分态密度图. 应变沿着x方向上 (a) εx = 0, (b) εx = –4.5%, (c) εx = +4.5%; 应变沿y方向上 (d) εy = –4.5%, (e) εy = +4.5%; 应变沿z方向上 (f) εz = –4.5%, (g) εz = +4.5%

    Figure 5.  Partial density of states of Sb2Se3. The strain is applied along x direction: (a) εx = 0, (b) εx = –4.5%, and (c) εx = +4.5%. The strain is applied along y direction: (d) εy = –4.5% and (e) εy = +4.5%. The strain is applied along z direction: (f) εz = –4.5% and (g) εz = +4.5%.

    图 6  迁移率随应变的变化 (a)应变沿x方向; (b)应变沿y方向; (c)应变沿z方向

    Figure 6.  Mobility variation with strain: (a) Strain along the x direction; (b) strain along the y direction; (c) strain along the z direction.

    表 1  不同应变方向及应变量下, 沿x, y, z方向的有效质量

    Table 1.  Effective mass along x, y, z directions under different strain directions and strain amounts.

    应变方向ε/%$ {m}_{x}^{{\mathrm{*}}} $/m0$ {m}_{y}^{{\mathrm{*}}} $/m0$ {m}_{z}^{{\mathrm{*}}} $/m0



    x方向
    –4.50.580.730.77
    –3.00.510.780.86
    –1.50.460.850.96
    00.440.941.12
    1.50.421.081.32
    3.00.411.321.59
    4.50.401.821.97



    y方向
    –4.50.355.281.37
    –3.00.374.241.29
    –1.50.401.511.20
    00.440.941.12
    1.50.480.701.03
    3.00.530.590.95
    4.50.600.530.88



    z方向
    –4.50.550.941.62
    –3.00.500.941.27
    –1.50.460.931.15
    00.440.941.12
    1.50.421.021.11
    3.00.401.351.12
    4.50.403.831.13
    DownLoad: CSV
    Baidu
  • [1]

    Green M A, Dunlop E D, Yoshita M 2023 Prog. Photovolt. Res. Appl. 31 651Google Scholar

    [2]

    Chen C, Li K H, Tang J 2022 Sol. RRL 6 2200094Google Scholar

    [3]

    Zhang X, Li C, Sun K, Zhou J, Zhang Z 2021 Adv. Energy Mater. 11 2002614Google Scholar

    [4]

    薛丁江, 石杭杰, 唐江 2015 64 038406Google Scholar

    Xue D J, Shi H J, Tang J 2015 Acta Phys. Sin. 64 038406Google Scholar

    [5]

    Zhao Y Q, Wang S Y, Li C, Che B, Chen X L, Chen H Y, Tang R F, Wang X M, Chen G L, Wang T, Gong J B, Chen T, Xiao X D, Li J M 2022 Energy Environ. Sci. 15 5118Google Scholar

    [6]

    Li Z Q, Liang X Y, Li G, Liu H X, Zhang H Y, Guo J X, Chen J W, Shen K, San X Y, Yu W Y, Schropp R, Mai Y H 2019 Nat. Commun. 10 125Google Scholar

    [7]

    Takagi S, Hoyt J L, Welser J J, Gibbons J F 1996 J. Appl. Phys. 80 1567Google Scholar

    [8]

    Welser J, Hoyt J L, Gibbons J F 1992 International Technical Digest on Electron Devices Meeting, San Francisco, CA, USA 1992, December 13–16, 1992 p1000

    [9]

    宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英 2010 59 579Google Scholar

    Song J J, Zhang H M, Hu H Y, Xuan R X, Dai X Y 2010 Acta Phys. Sin. 59 579Google Scholar

    [10]

    Jia W L, He Y, Cao Y L, Wang X M, Lin Z, Li W T, Xu M, Li E L 2022 Micro Nanostructures 168 207300Google Scholar

    [11]

    Datye I M, Daus A, Grady R W, Brenner K, Vaziri S, Pop E 2022 Nano Lett. 22 8052Google Scholar

    [12]

    Ge G X, Zhang Y W, Yan H X, Yang J M, Zhou L, Sui X J 2021 Appl. Surf. Sci. 538 148009Google Scholar

    [13]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [14]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Phys. Status Solidi B 248 700Google Scholar

    [15]

    Bardekn J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [16]

    Xi J Y, Long M Q, Tang L, Wang D, Shuai Z G 2012 Nanoscale 4 4348Google Scholar

    [17]

    El-Sayad E A, Moustafa A M, Marzouk S Y 2009 Physica B 404 1119Google Scholar

    [18]

    Kumar A, Ahluwalia P K 2013 Physica B 419 66Google Scholar

    [19]

    Peng X H, Ganti S, Alizadeh A, Sharma P, Kumar S K, and Nayak S K 2006 Phys. Rev. B 74 035339Google Scholar

    [20]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [21]

    Kawamura M 2019 Comput. Phys. Commun. 239 197Google Scholar

    [22]

    Wang X W, Li Z Z, Kavanagh S R, Ganose A M, Walsh A 2022 Phys. Chem. Chem. Phys. 24 7195Google Scholar

    [23]

    Effective Mass Calculator for Semiconductors, Fonari A, Sutton Chttps://github.com/afonari/emc [2013-3-18]

    [24]

    Zhang B Y, Qian X F 2022 ACS Appl. Energy Mater. 5 492Google Scholar

    [25]

    Zhou Y, Wang L, Chen S Y, Qin S K, Liu X S, Chen Jie, Xue D J, Luo M, Cao Y Z, Cheng Y B, Sargent E H, Tang J 2015 Nat. Photonics 9 409Google Scholar

    [26]

    Chen C, Bobela D C, Yang Ye, Lu S C, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C, Tang J 2017 Front. Optoelectron. 10 18Google Scholar

  • [1] Zhang Lei, Chen Qi-Hang, Cao Shuo, Qian Ping. First-principles calculations of carrier mobility in monolayer IrSCl and IrSI. Acta Physica Sinica, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [2] Ma Ze-Cheng, Liu Zeng-Lin, Cheng Bin, Liang Shi-Jun, Miao Feng. In-situ strain engineering and applications of van der Waals materials. Acta Physica Sinica, 2024, 73(11): 110701. doi: 10.7498/aps.73.20240353
    [3] Xiong Xiang-Jie, Zhong Fang, Zhang Zi-Wen, Chen Fang, Luo Jing-Lan, Zhao Yu-Qing, Zhu Hui-Ping, Jiang Shao-Long. Photovoltaic properties of two-dimensional van der Waals heterostructure Cs3X2I9/InSe (X = Bi, Sb). Acta Physica Sinica, 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [4] Zhang Leng, Zhang Peng-Zhan, Liu Fei, Li Fang-Zheng, Luo Yi, Hou Ji-Wei, Wu Kong-Ping. Carrier mobility in doped Sb2Se3 based on deformation potential theory. Acta Physica Sinica, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [5] Zhou Zhan-Hui, Li Qun, He Xiao-Min. Electron transport mechanism in AlN/β-Ga2O3 heterostructures. Acta Physica Sinica, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [6] Huang Hao, Niu Ben, Tao Ting-Ting, Luo Shi-Ping, Wang Ying, Zhao Xiao-Hui, Wang Kai, Li Zhi-Qiang, Dang Wei. Ultrafast carrier kinetics at surface and interface of Sb2Se3 film by transient reflectance. Acta Physica Sinica, 2022, 71(6): 066402. doi: 10.7498/aps.71.20211714
    [7] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [8] Lü Yi, Zhang He-Ming, Hu Hui-Yong, Yang Jin-Yong, Yin Shu-Juan, Zhou Chun-Yu. A Model of channel current for uniaxially strained Si NMOSFET. Acta Physica Sinica, 2015, 64(19): 197301. doi: 10.7498/aps.64.197301
    [9] Bai Min, Xuan Rong-Xi, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Shu Bin. Hole scattering and mobility in compressively strained Ge/(001)Si1-xGex. Acta Physica Sinica, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [10] Liu Bin-Li, Tang Yong, Luo Yi-Fei, Liu De-Zhi, Wang Rui-Tian, Wang Bo. Investigation of the prediction model of IGBT junction temperature based on the rate of voltage change. Acta Physica Sinica, 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [11] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [12] Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Wang Xiao-Yan, Wang Guan-Yu. Hole scattering mechanism in tetragonal strained Si. Acta Physica Sinica, 2012, 61(5): 057304. doi: 10.7498/aps.61.057304
    [13] Yu Huang-Zhong. Measurement of the hole mobility in the blend system by space charge limited current. Acta Physica Sinica, 2012, 61(8): 087204. doi: 10.7498/aps.61.087204
    [14] Luo Yang, Duan Yu, Chen Ping, Zang Chun-Liang, Xie Yue, Zhao Yi, Liu Shi-Yong. Preliminary investigation on the method of determining electron mobility of tris (8-hydroxyquinolinato) aluminum by space charge limited current. Acta Physica Sinica, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [15] Zhang Jin-Feng, Wang Ping-Ya, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. High electron mobility lattice-matched InAlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [16] Liu Yu-Min, Yu Zhong-Yuan, Ren Xiao-Min. Effects of the thickness of spacing layer and capping layer on the strain distribution and wavelength emission of InAs/GaAs quantum dot. Acta Physica Sinica, 2009, 58(1): 66-72. doi: 10.7498/aps.58.66
    [17] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [18] Xu Xue-Mei, Peng Jing-Cui, Li Hong-Jian, Qu Shu, Luo Xiao-Hua. . Acta Physica Sinica, 2002, 51(10): 2380-2385. doi: 10.7498/aps.51.2380
    [19] YUAN DE-RONG, QIAO LING-ZHI. KINK SOLITON EXCITATION IN HYDROGEN BONDED CHAIN WITH ASYMMETRIC DOUBLE WELL POTENTIALS. Acta Physica Sinica, 2001, 50(3): 394-397. doi: 10.7498/aps.50.394
    [20] LI ZHI-FENG, LU WEI, YE HONG-JUAN, YUAN XIAN-ZHANG, SHEN XUE-CHU, G.Li, S.J.Chua. OPTICAL SPECTROSCOPY STUDY ON CARRIER CONCENTRATION AND MOBILITY IN GaN. Acta Physica Sinica, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
Metrics
  • Abstract views:  2036
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2024
  • Accepted Date:  28 February 2024
  • Available Online:  09 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回
Baidu
map