Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of microstructure on thermal fatigue effect of laminated tungsten based plasma-facing material

Qi Chao Ma Yu-Tian Qi Yan-Fei Xiao Shan-Qu Wang Bo

Citation:

Influence of microstructure on thermal fatigue effect of laminated tungsten based plasma-facing material

Qi Chao, Ma Yu-Tian, Qi Yan-Fei, Xiao Shan-Qu, Wang Bo
PDF
HTML
Get Citation
  • The response of tungsten (W) to thermal shock loading, as the best candidate for plasma-facing material (PFM), is an important issue in the research of future fusion devices. Under thermal loading, thermal irradiation damage, including brittle cracking and fatigue cracking, occurs on the surface of tungsten based plasma-facing material (W-PFM). In this work, a new scheme to suppress the thermal irradiation damage to W-PFM, i.e. the laminated structure W-PFM scheme, is proposed. Thermal fatigue experiments of laminated structure W composed of W foils with different thickness and heat treatment processes are carried out by using an electron beam device. The samples are subjected to thermal pulses with a power density of 48 MW/m2 for 5000 cycles. The results indicate that the crack damage to the surface of the laminated structure W decreases with the decrease of the thickness of W foils under the same heat treatment conditions. The main cracks are produced on the surface of laminated structure W after cyclic thermal loads have been all approximately parallel to the foil thickness direction. Only the main cracks appear on the surfaces of W foils with a smaller thickness, while crack networks develop on the surfaces of W foils with a larger thickness , in addition to the main cracks with a larger width. In the rolled state, the laminated structure W has the lowest degree of surface plastic deformation for the same thickness. The thermal fatigue crack damage to the surface is quantitatively analyzed by using computer image processing software and analysis software, and scanning electron microscope images of the thermal damage area are finally selected. It is found that the de-stressed state W has the smallest crack area and the smallest number of cracks for the same thickness, indicating that the de-stressed state W has the strongest resistance to irradiation damage. The experimental results also show that in addition to the effect of microstructure, both the uniaxial stress state and the crack-blocking mechanism of the laminated structured W-PFM contribute to the improvement of its thermal fatigue performance.
      Corresponding author: Wang Bo, wangbo@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52104374) and the Hebei Province Central Leading Local Science and Technology Development Fund Project, China (Grant No. 236Z1004G).
    [1]

    Zhang C, Wang K, Si R, Li J, Song C, Wu S, Yan B, Chen C 2023 Chin. Phys. B 32 113102Google Scholar

    [2]

    Xu C, Wan F R 2023 ActaPhys. Sin. 72 056801 [徐驰, 万发荣 2023 72 056801]Google Scholar

    Xu C, Wan F R 2023 ActaPhys. Sin. 72 056801Google Scholar

    [3]

    Qin M F, Wang Y M, Zhang H Y, Sun J Z 2023 ACTA Phys. Sin. 72 245204 [秦梦飞, 王英敏, 张红玉, 孙继忠 2023 72 245204]Google Scholar

    Qin M F, Wang Y M, Zhang H Y, Sun J Z 2023 ACTA Phys. Sin. 72 245204Google Scholar

    [4]

    Terra A, Sergienko G, Gago M, Kreter A, Martynova Y, Rasinski M, Wirtz M, Loewenhoff T, Mao Y, Schwalenberg D, Raumann L, Coenen J W, Moeller S, Koppitz T, Dorow-Gerspach D, Brezinsek S, Unterberg B, Linsmeier C 2020 Phys. Scr. 2020 014045

    [5]

    Wirtz M, Linke J, Loewenhoff Th, Pintsuk G, Uytdenhouwen I 2017 Nucl. Mater. Energy 12 148Google Scholar

    [6]

    Wang L, Wang B, Li S D, Ma D, Tang Y H, Yan H 2016 Int. J. Refract. Met. Hard Mater. 61 61Google Scholar

    [7]

    Loewenhoff Th, Linke J, Pintsuk G, Thomser C 2012 Fusion Eng. Des. 87 1201Google Scholar

    [8]

    Pintsuk G, Prokhodtseva A, Uytdenhouwen I 2011 J. Nucl. Mater. 417 481Google Scholar

    [9]

    Linke J, Loewenhoff T, Massaut V, Pintsuk G, Ritz G, Rödig M, Schmidt A, Thomser C, Uytdenhouwen I, Vasechko V, Wirtz M 2011 Nucl. Fusion 51 073017Google Scholar

    [10]

    Garkusha I E, Landman I, Linke J, Makhlaj V A, Medvedev A V, Malykhin S V, Peschanyi S, Pintsuk G, Pugachev A T, Tereshin V I 2011 J. Nucl. Mater. 415 S65Google Scholar

    [11]

    Pintsuk G, Kühnlein W, Linke J, Rödig M 2007 Fusion Eng. Des. 82 1720Google Scholar

    [12]

    Wang Y, Wang H, Mi B, Zhao J, Zhang C 2023 J. Nucl. Mater. 583 154555Google Scholar

    [13]

    Wirtz M, Linke J, Loewenhoff T, Pintsuk G, Uytdenhouwen I 2016 Phys. Scr. T167 014015Google Scholar

    [14]

    Rieth M, Dudarev S L, Gonzalez De Vicente S M, et al. 2013 J. Nucl. Mater. 432 482Google Scholar

    [15]

    Wurster S, Baluc N, Battabyal M, Crosby T, Du J, García-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz R J, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You J H, Pippan R 2013 J. Nucl. Mater. 442 S181Google Scholar

    [16]

    Parkes N, Dodds R, Watson A, Dye D, Hardie C, Humphry-Baker S A, Knowles A J 2023 Int. J. Refract. Met. Hard Mater. 113 106209Google Scholar

    [17]

    Alam M E, Odette G R 2023 Nucl. Mater. Energy 36 101467Google Scholar

    [18]

    Yang T, Wang J, Feng F, Liu X, Youyun L, Xueyu G 2023 Fusion Eng. Des. 196 113991Google Scholar

    [19]

    Dang N, Lian Y, Song J, Dai S, Yan B, Fan F, Wang J, Liu X 2023 Int. J. Refract. Met. Hard Mater. 117 106415Google Scholar

    [20]

    Coenen J W, Mao Y, Sistla S, Riesch J, Hoeschen T, Broeckmann Ch, Neu R, Linsmeier Ch 2018 Nucl. Mater. Energy 15 214Google Scholar

    [21]

    Neu R, Coenen J W, Curzadd B, Gietl H, Greuner H, Höschen T, Hunger K, Lürbke R, Müller A, Riesch J, Schlick G, Siefken U, Visca E, You J 2023 Mater. Res. Express 10 116516Google Scholar

    [22]

    Terra A, Sergienko G, Tokar M, Borodin D, Dittmar T, Huber A, Kreter A, Martynova Y, Möller S, Rasiński M, Wirtz M, Loewenhoff Th, Dorow-Gerspach D, Yuan Y, Brezinsek S, Unterberg B, Linsmeier Ch 2019 Nucl. Mater. Energy 19 7Google Scholar

    [23]

    Wang B, Hu D Z, Ma D, Lu G H 2018 US10102928B2

    [24]

    Wang B, Hu D Z, Ma D, Lu G H 2016 ZL201410117811. X

    [25]

    Li S D, Wang B, Liu Y H, Qi Y F, Li M, Ma Y T 2018 Chin. J. Vac. Sci. Technol. 38 434

    [26]

    Xiao S, Ma Y, Tian L, Li M, Qi C, Wang B 2020 Nucl. Mater. Energy 23 100746Google Scholar

    [27]

    Wu X C, Xu L P 2002 Phys. Test. Chem. Anal. A Physical Test. 38 14

  • 图 1  叠片结构W-PFM方案 (a)叠片结构示意图; (b)单轴应力示意图

    Figure 1.  Laminated structure W-PFM scheme: (a) Schematic of laminated structure; (b) schematic of uniaxial stresses.

    图 2  (a) 叠片结构W-PFM样品示意图; (b) 叠片结构W-PFM样品实物图

    Figure 2.  (a) Schematic diagram of the laminated structure W-PFM sample; (b) physical diagram of laminated structured W-PFM sample.

    图 3  W箔和块体W表面形貌 (a1), (b1), (c1) 0.05 mm, 轧制, 去应力和再结晶W; (a2), (b2), (c2) 0.1 mm, 轧制, 去应力和再结晶W; (a3), (b3), (c3) 3 mm, 轧制, 去应力和再结晶W

    Figure 3.  The morphology of W foil and bulk W: (a1), (b1), (c1) 0.05 mm, rolled, stress-free, and recrystallied W; (a2), (b2), (c2) 0.1 mm, rolled, stress-free, and recrystallied W; (a3), (b3), (c3) 3 mm: rolled, stress-free, and recrystallied W.

    图 4  不同热处理工艺下的叠片结构W和块状W表面的热损伤形貌 (a1), (b1), (c1) 0.05 mm, 轧制, 去应力和再结晶W; (a2), (b2), (c2) 0.1 mm, 轧制, 去应力和再结晶W; (a3), (b3), (c3) 3 mm, 轧制, 去应力和再结晶W

    Figure 4.  Thermal damage morphology of laminated W and bulk W under different heat treatment processes: (a1), (b1), (c1) 0.05 mm, rolled, stress-free, and recrystallied W; (a2), (b2), (c2) 0.10 mm, rolled, stress-free, and recrystallied W; (a3), (b3), (c3) 3.00 mm, rolled, stress-free, and recrystallied W.

    图 5  不同热处理工艺下的W箔和块体W表面热损伤区域的微观形貌 (a1), (b1), (c1) 0.05 mm, 轧制, 去应力和再结晶W; (a2), (b2), (c2) 0.10 mm, 轧制, 去应力和再结晶W; (a3), (b3), (c3) 3.00 mm, 轧制, 去应力和再结晶W

    Figure 5.  Micromorphology of thermal damage area on the surface of W foil and bulk W under different heat treatment processes: (a1), (b1), (c1) 0.05 mm, rolled, stress-free, and recrystallied W; (a2), (b2), (c2) 0.10 mm, rolled, stress-free, and recrystallied W; (a3), (b3), (c3) 3.00 mm, rolled, stress-free, and recrystallied W.

    图 6  不同热处理工艺下叠片结构W和块体W表面裂纹的标定

    Figure 6.  Calibration of surface cracks of laminated W and bulk W under different heat treatment processes.

    图 7  不同热处理工艺下叠片结构W和块体W表面裂纹的评估参数 (a)裂纹面积密度; (b)主裂纹平均宽度; (c)表面损伤因子

    Figure 7.  Evaluation parameters of surface crack damage of laminated W and bulk W under different heat treatment processes: (a) Percentage of crack area; (b) average width of main crack; (c) surface damage factor.

    表 1  热处理工艺参数

    Table 1.  Heat treatment process parameters.

    升温速率/(K·min–1) 最高温度/℃ 保温时间/h 降温速率/(K·min–1)
    去应力退火 > 400℃, 15; < 400℃, 20 1000 0.5 > 400℃, 20; < 400℃, 随炉冷却
    再结晶退火 > 400℃, 15; < 400℃, 20 1600 1.0 > 400℃, 20; < 400℃, 随炉冷却
    DownLoad: CSV

    表 2  实验后样品热加载区域表面粗糙度

    Table 2.  Surface roughness of the thermally loaded region of the samples after experimentation

    0.05 mm/
    (Ra·μm–1)
    0.10 mm/
    (Ra·μm–1)
    3.00 mm/
    (Ra·μm–1)
    原始轧制态 0.06 0.14 1.00
    去应力态 0.11 0.40 1.30
    再结晶态 0.18 0.65 2.00
    DownLoad: CSV
    Baidu
  • [1]

    Zhang C, Wang K, Si R, Li J, Song C, Wu S, Yan B, Chen C 2023 Chin. Phys. B 32 113102Google Scholar

    [2]

    Xu C, Wan F R 2023 ActaPhys. Sin. 72 056801 [徐驰, 万发荣 2023 72 056801]Google Scholar

    Xu C, Wan F R 2023 ActaPhys. Sin. 72 056801Google Scholar

    [3]

    Qin M F, Wang Y M, Zhang H Y, Sun J Z 2023 ACTA Phys. Sin. 72 245204 [秦梦飞, 王英敏, 张红玉, 孙继忠 2023 72 245204]Google Scholar

    Qin M F, Wang Y M, Zhang H Y, Sun J Z 2023 ACTA Phys. Sin. 72 245204Google Scholar

    [4]

    Terra A, Sergienko G, Gago M, Kreter A, Martynova Y, Rasinski M, Wirtz M, Loewenhoff T, Mao Y, Schwalenberg D, Raumann L, Coenen J W, Moeller S, Koppitz T, Dorow-Gerspach D, Brezinsek S, Unterberg B, Linsmeier C 2020 Phys. Scr. 2020 014045

    [5]

    Wirtz M, Linke J, Loewenhoff Th, Pintsuk G, Uytdenhouwen I 2017 Nucl. Mater. Energy 12 148Google Scholar

    [6]

    Wang L, Wang B, Li S D, Ma D, Tang Y H, Yan H 2016 Int. J. Refract. Met. Hard Mater. 61 61Google Scholar

    [7]

    Loewenhoff Th, Linke J, Pintsuk G, Thomser C 2012 Fusion Eng. Des. 87 1201Google Scholar

    [8]

    Pintsuk G, Prokhodtseva A, Uytdenhouwen I 2011 J. Nucl. Mater. 417 481Google Scholar

    [9]

    Linke J, Loewenhoff T, Massaut V, Pintsuk G, Ritz G, Rödig M, Schmidt A, Thomser C, Uytdenhouwen I, Vasechko V, Wirtz M 2011 Nucl. Fusion 51 073017Google Scholar

    [10]

    Garkusha I E, Landman I, Linke J, Makhlaj V A, Medvedev A V, Malykhin S V, Peschanyi S, Pintsuk G, Pugachev A T, Tereshin V I 2011 J. Nucl. Mater. 415 S65Google Scholar

    [11]

    Pintsuk G, Kühnlein W, Linke J, Rödig M 2007 Fusion Eng. Des. 82 1720Google Scholar

    [12]

    Wang Y, Wang H, Mi B, Zhao J, Zhang C 2023 J. Nucl. Mater. 583 154555Google Scholar

    [13]

    Wirtz M, Linke J, Loewenhoff T, Pintsuk G, Uytdenhouwen I 2016 Phys. Scr. T167 014015Google Scholar

    [14]

    Rieth M, Dudarev S L, Gonzalez De Vicente S M, et al. 2013 J. Nucl. Mater. 432 482Google Scholar

    [15]

    Wurster S, Baluc N, Battabyal M, Crosby T, Du J, García-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz R J, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You J H, Pippan R 2013 J. Nucl. Mater. 442 S181Google Scholar

    [16]

    Parkes N, Dodds R, Watson A, Dye D, Hardie C, Humphry-Baker S A, Knowles A J 2023 Int. J. Refract. Met. Hard Mater. 113 106209Google Scholar

    [17]

    Alam M E, Odette G R 2023 Nucl. Mater. Energy 36 101467Google Scholar

    [18]

    Yang T, Wang J, Feng F, Liu X, Youyun L, Xueyu G 2023 Fusion Eng. Des. 196 113991Google Scholar

    [19]

    Dang N, Lian Y, Song J, Dai S, Yan B, Fan F, Wang J, Liu X 2023 Int. J. Refract. Met. Hard Mater. 117 106415Google Scholar

    [20]

    Coenen J W, Mao Y, Sistla S, Riesch J, Hoeschen T, Broeckmann Ch, Neu R, Linsmeier Ch 2018 Nucl. Mater. Energy 15 214Google Scholar

    [21]

    Neu R, Coenen J W, Curzadd B, Gietl H, Greuner H, Höschen T, Hunger K, Lürbke R, Müller A, Riesch J, Schlick G, Siefken U, Visca E, You J 2023 Mater. Res. Express 10 116516Google Scholar

    [22]

    Terra A, Sergienko G, Tokar M, Borodin D, Dittmar T, Huber A, Kreter A, Martynova Y, Möller S, Rasiński M, Wirtz M, Loewenhoff Th, Dorow-Gerspach D, Yuan Y, Brezinsek S, Unterberg B, Linsmeier Ch 2019 Nucl. Mater. Energy 19 7Google Scholar

    [23]

    Wang B, Hu D Z, Ma D, Lu G H 2018 US10102928B2

    [24]

    Wang B, Hu D Z, Ma D, Lu G H 2016 ZL201410117811. X

    [25]

    Li S D, Wang B, Liu Y H, Qi Y F, Li M, Ma Y T 2018 Chin. J. Vac. Sci. Technol. 38 434

    [26]

    Xiao S, Ma Y, Tian L, Li M, Qi C, Wang B 2020 Nucl. Mater. Energy 23 100746Google Scholar

    [27]

    Wu X C, Xu L P 2002 Phys. Test. Chem. Anal. A Physical Test. 38 14

  • [1] Zhang Guo-Shuai, Yin Chao, Wang Zhao-Fan, Chen Ze, Mao Shi-Feng, Ye Min-You. Simulation of neutron irradiation-induced recrystallization of tungsten. Acta Physica Sinica, 2023, 72(16): 162801. doi: 10.7498/aps.72.20230531
    [2] Xu Chi, Wan Fa-Rong. Analysis of dislocation characteristics and inside-outside contrasts in irradiated and annealed tungsten as a fusion reactor material. Acta Physica Sinica, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [3] Zhang Wei-Guang, Zhang Kai-Fen, Xia Li-Dong, Huang Xin, Zhou Xiao-Song, Peng Shu-Ming, Shi Li-Qun. Crystal nucleation behavior of deuterium tritium ice. Acta Physica Sinica, 2022, 71(2): 025203. doi: 10.7498/aps.71.20211018
    [4] Study on crystal nucleation behavior of deuterium-tritium ice. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211018
    [5] Huang Wen-Jun, Qiao Jun-Wei, Chen Shun-Hua, Wang Xue-Jiao, Wu Yu-Cheng. Preparation, structures and properties of tungsten-containing refractory high entropy alloys. Acta Physica Sinica, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [6] Zhang En-Hao, Cai Hong-Bo, Du Bao, Tian Jian-Min, Zhang Wen-Shuai, Kang Dong-Guo, Zhu Shao-Ping. Heat flow of laser-ablated gold plasma in inertial confinement fusion hohlraum. Acta Physica Sinica, 2020, 69(3): 035204. doi: 10.7498/aps.69.20191423
    [7] Li Xin-Xia, Li Guo-Zhuang, Liu Hong-Bo. Helicon wave damping coefficient of Chinese fusion engineering testing reactor plasma. Acta Physica Sinica, 2020, 69(14): 145201. doi: 10.7498/aps.69.20200222
    [8] Zhou Liang-Fu, Zhang Jing, He Wen-Hao, Wang Dong, Su Xue, Yang Dong-Yang, Li Yu-Hong. The nucleation and growth of Helium hubbles at grain boundaries of bcc tungsten: a molecular dynamics simulation. Acta Physica Sinica, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [9] Ma Yu-Tian, Liu Jun-Biao, Han Li, Tian Li-Feng, Wang Xue-Cong, Meng Xiang-Min, Xiao Shan-Qu, Wang Bo. Helium behavior of tungsten investigated by helium ion microscope. Acta Physica Sinica, 2019, 68(4): 040702. doi: 10.7498/aps.68.20181864
    [10] Guo Hong-Yan, Xia Min, Yan Qing-Zhi, Guo Li-Ping, Chen Ji-Hong, Ge Chang-Chun. Microstructure of medium energy and high density helium ion implanted tungsten. Acta Physica Sinica, 2016, 65(7): 077803. doi: 10.7498/aps.65.077803
    [11] Sun Zhen-Yue, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen. Simulation of erosion of the tungsten wall by impurities in the divertor plasma. Acta Physica Sinica, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [12] Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Ding Fang, Wang De-Zhen. Numerical study of the erosion of the EAST tungsten divertor targets caused by edge localized modes. Acta Physica Sinica, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [13] Wang Xin-Xin, Zhang Ying, Zhou Hong-Bo, Wang Jin-Long. Effects of niobium on helium behaviors in tungsten:a first-principles investigation. Acta Physica Sinica, 2014, 63(4): 046103. doi: 10.7498/aps.63.046103
    [14] Guo Long-Ting, Sun Ji-Zhong, Huang Yan, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of low-energy hydrogen atoms bombarding tungsten (001) surface at different angles and their depth distribution. Acta Physica Sinica, 2013, 62(22): 227901. doi: 10.7498/aps.62.227901
    [15] Zhang Zhi-Hai, Sun Ji-Zhong, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of energy exchanges between single hydrogen and graphite(001). Acta Physica Sinica, 2012, 61(4): 047901. doi: 10.7498/aps.61.047901
    [16] Li Shou-Yang, Sun Ji-Zhong, Zhang Zhi-Hai, Liu Sheng-Guang, Wang De-Zhen. Molecular dynamics simulation of energy exchange during hydrogen collision with graphite sheet containing a vacancy. Acta Physica Sinica, 2011, 60(5): 057901. doi: 10.7498/aps.60.057901
    [17] Liu Jin-Yuan, Chen Long, Wang Feng, Wang Nan, Duan Ping. Characteristics of charging, motion and temperature of dust particulates in magnetic fusion devices. Acta Physica Sinica, 2010, 59(12): 8692-8700. doi: 10.7498/aps.59.8692
    [18] Slowing-down effect of alpha particle in thermonuclear burn of D-T plasma. Acta Physica Sinica, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [19] LUO ZHENG-MING, TEN LI-JIAN. THE SLOWING DOWN OF FAST PARTICLES PASSING THROUGTH FUSION PLASMA AND THE ENERGY GAIN OF FUSION REACTION. Acta Physica Sinica, 1982, 31(9): 1166-1175. doi: 10.7498/aps.31.1166
    [20] HUO YU-KUN. THE SLOWING DOWN-DIFFUSION OF α PARTICLES IN FUSION PLASMA. Acta Physica Sinica, 1980, 29(3): 320-329. doi: 10.7498/aps.29.320
Metrics
  • Abstract views:  1744
  • PDF Downloads:  32
  • Cited By: 0
Publishing process
  • Received Date:  03 January 2024
  • Accepted Date:  13 February 2024
  • Available Online:  10 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回
Baidu
map