Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Intelligent optimization design of large-scale three-dimensional ultrasonic vibration system

Lin Ji-Yan Sun Jiao-Xia Lin Shu-Yu

Citation:

Intelligent optimization design of large-scale three-dimensional ultrasonic vibration system

Lin Ji-Yan, Sun Jiao-Xia, Lin Shu-Yu
PDF
HTML
Get Citation
  • Large-scale three-dimensional ultrasonic vibration systems are susceptible to the influence of coupled vibration, resulting in a series of problems such as increased energy loss, small longitudinal displacement amplitude of the radiation surface, and uneven distribution of longitudinal displacement amplitude, which can seriously affect the working efficiency of ultrasonic processing system. How to effectively control the coupled vibration of large-scale three-dimensional ultrasonic transducer systems and optimize their performance has become an urgent problem in the field of power ultrasound. The research has found that some phononic crystal slots and point defect structures can suppress the lateral vibration of large-scale transducer systems, improve the uniformity of system amplitude distribution, and artificially regulate the performance of large-scale three-dimensional ultrasonic vibration systems by changing the configuration parameters of phononic crystal structures. However, excessive design parameters will inevitably increase the complexity of system design, and, currently, the optimization design of large-scale three-dimensional ultrasonic transducer systems relies on empirical trial and error methods which has low design efficiency and low success rate, and cannot guarantee the system performance. Therefore, in the study, homogeneous dislocations and point defect structures are introduced to optimize the design of large-scale three-dimensional ultrasonic vibration systems. Data analysis techniques are used to evaluate the influences of the configuration of homogeneous dislocations and point defect structures on the longitudinal displacement amplitude, amplitude distribution uniformity, radiated sound power, working bandwidth of the system’s radiation surface. And a predictive model for the performance of large-scale ultrasonic transducer system with homogeneous dislocation structure and near periodic defect structure is established, which can achieve intelligent design of large-scale power ultrasonic transducer system, improve design efficiency and success rate, and reduce the design cost.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174240, 12364057, 12004330) and the Doctoral Research Start-up Fund, China (Grant No. 22GK26).
    [1]

    周光平, 梁明军, 王家宣 2004 声学技术 2004 183Google Scholar

    Zhou G P, Liang M J, Wang J X 2004 Tech. Acous. 2004 183Google Scholar

    [2]

    Mori E, Itoh K, Imamura A 1995 J. Acous. Soc. Jpn. 51 455Google Scholar

    [3]

    Lin S 1995 Appl. Acous. 44 249Google Scholar

    [4]

    Ren S C 1983 Acta Acus. 1 152Google Scholar

    [5]

    Lin S 2009 IEEE Trans. Ultra. Ferr. Freq Cont. 56 1990.Google Scholar

    [6]

    俞宏沛 1994 声学与电子工程 1994 9

    Yu H P 1994 Acous. Elec. Engi. 1994 9

    [7]

    周利生 1993 声学与电子工程 1993 28

    Zhou L S 1993 Acous. Elec. Engi. 1993 28

    [8]

    周利生 1993 声学与电子工程 1993 16

    Zhou L S 1993 Acous. Elec. Engi. 1993 16

    [9]

    林书玉, 张福成 1992 声学学报 1992 451

    Lin S Y, Zhang F C 1991 J. Acous. 1992 451

    [10]

    林书玉, 张福成 1991 应用声学 1991 10Google Scholar

    Lin S Y, Zhang F C 1991 Appl. Acous. 1991 10Google Scholar

    [11]

    林书玉, 张福成, 郭孝武 1991 声学学报 1991 91Google Scholar

    Lin S Y, Zhang F C Guo X W 1991 J. Acous. 1991 91Google Scholar

    [12]

    Lucas M, Smith A C 1997 J. Vibr. Acous. 119 410Google Scholar

    [13]

    Cardoni A, Lucas M 2002 Ultrasonics 40 365Google Scholar

    [14]

    Kumar R D, Rani M R, Elangovan S 2014 Appl. Mech. Mater. 592-594 859Google Scholar

    [15]

    Yeon J L, Muhammad B S, Dong S P 2019 MATEC Web Conf. 257 1Google Scholar

    [16]

    Adachi K, Ueha S 1990 J. Acous. Soc. Am. 87 208Google Scholar

    [17]

    Thanh H N, Quang T Q, Cong L T 2017 IOP Conference Series:Materials Science and Engineering 241 1Google Scholar

    [18]

    Rani M R, Prakasan K, Rudramoorthy R 2014 Int. J. Des. 5 344Google Scholar

    [19]

    程存弟 1991 应用声学 10 44Google Scholar

    Chen C D 1991 Appl. Acous. 10 44Google Scholar

    [20]

    林书玉, 张福成 1992 声学技术 11 24Google Scholar

    Lin S Y, Zhang F C 1992 Tech. Acous. 11 24Google Scholar

    [21]

    梁召峰, 周光平, 莫喜平, 张亦慧, 李正中 2008 机械科学与技术 27 334Google Scholar

    Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2008 Mech. Sci. Tech. 27 334Google Scholar

    [22]

    梁召峰, 周光平, 莫喜平, 李正中 2009 工程设计学报 16 200Google Scholar

    Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2009 Journal of Engineering Design 16 200Google Scholar

    [23]

    成桢, 郭建中 2010 声学技术 29 103

    Chen Z, Guo J Z 2010 Tech. Acous. 29 103

    [24]

    赵甜甜, 林书玉, 段祎林 2018 67 024303Google Scholar

    Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 024303Google Scholar

    [25]

    王莎, 林书玉 2019 68 173Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 173Google Scholar

    [26]

    Wang S, Lin S Y 2019 Ultrasonics 99 105954.Google Scholar

    [27]

    Lin J Y, Lin S Y 2020 Crystals 10 1Google Scholar

    [28]

    Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617 [赵言诚, 赵芳, 苑立波 2006 哈尔滨工程大学学报 2006 617]Google Scholar

    Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617Google Scholar

    [29]

    Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517 [赵芳, 苑立波 2006 2 517]Google Scholar

    Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517Google Scholar

    [30]

    何姣 2013 博士学位论文 (昆明: 云南师范大学)

    He J 2013 Ph. D. Dissertation (Kunming: Yunnan Normal University

    [31]

    魏琦, 程营, 刘晓峻 2011 60 124301Google Scholar

    Wei Q, Cheng Y, Liu X J 2011 Acta Phys. Sin. 60 124301Google Scholar

  • 图 1  大尺寸三维长方体超声振动系统结构示意图及中心线位置

    Figure 1.  Structural schematic diagram and centerline position of large-dimension 3D cube ultrasonic vibration system.

    图 2  大尺寸三维超声振动系统振型图

    Figure 2.  Modal diagram of large-dimension 3D ultrasonic vibration system.

    图 3  辐射面和辐射面长度(X方向)和宽度(Y方向)上的纵向相对位移振幅分布对比图

    Figure 3.  Comparison diagram of longitudinal relative displacement amplitude distribution on the radiation surface and the length (X-direction) and width (Y-direction) of the radiation surface.

    图 4  同质位错结构 (a) 横向位错结构; (b) 纵向位错结构

    Figure 4.  Schematic diagram of dislocation defect: (a) Lateral dislocation structure; (b) longitudinal dislocation structure.

    图 5  同质位错结构的工具头 (a) 模型图; (b) 工具头YZ面的各部分尺寸; (c) 工具头XZ面的各部分尺寸

    Figure 5.  Tool heads with homogeneous dislocation structures: (a) Model diagram; (b) dimensions of each part of the YZ surface of the tool head; (c) dimensions of each part of the XZ surface of the tool head.

    图 6  同质位错结构的大尺寸三维超声振动系统振型图

    Figure 6.  Modal diagram of large-dimension 3D ultrasonic vibration system with homogeneous dislocation structure.

    图 7  辐射面和辐射面长度(X方向)和宽度(Y方向)上的纵向相对位移振幅分布对比图

    Figure 7.  Comparison diagram of longitudinal relative displacement amplitude distribution on the radiation surface and the length (X-direction) and width (Y-direction) of the radiation surface.

    图 8  同质位错与点缺陷结构的工具头 (a) 模型图; (b) 空气圆椎体孔的尺寸; (c) 空气圆柱体孔的尺寸

    Figure 8.  Tool heads with homogeneous dislocations and point defect structures: (a) Model diagram; (b) dimensions of air circular vertebral hole; (c) dimensions of air cylinder holes.

    图 9  同质位错与点缺陷结构的大尺寸三维超声振动系统振型图

    Figure 9.  Modal diagram of large-dimension 3D ultrasonic vibration system with homogeneous dislocations and point defect structures.

    图 10  辐射面和辐射面长度(X方向)和宽度(Y方向)上的纵向相对位移振幅分布对比图

    Figure 10.  Comparison diagram of longitudinal relative displacement amplitude distribution on the radiation surface and the length (X-direction) and width (Y-direction) of the radiation surface.

    图 11  h对系统性能的影响

    Figure 11.  Influence of the parameter of h on the performance of the system.

    图 14  r3对系统性能的影响

    Figure 14.  Influence of the parameter of r3 on the performance of the system.

    图 12  w对系统性能的影响

    Figure 12.  Influence of the parameter of w on the performance of the system.

    图 13  h1对系统性能的影响

    Figure 13.  Influence of the parameter of h1 on the performance of the system.

    图 15  频率f的预测值和实测值的对比及相对误差

    Figure 15.  Comparison and relative error between predicted and measured values of frequency f.

    图 16  x位移的预测值和实测值的对比及相对误差

    Figure 16.  Comparison and relative error between predicted and measured values of x displacement.

    图 17  y位移的预测值和实测值的对比及相对误差

    Figure 17.  Comparison and relative error between predicted and measured values of y displacement.

    图 18  x均匀度的预测值和实测值的对比及相对误差

    Figure 18.  Comparison and relative error between predicted and measured values of x uniformity.

    图 19  y均匀度的预测值和实测值的对比及相对误差

    Figure 19.  Comparison and relative error between predicted and measured values of y uniformity.

    图 20  加工的两套系统的实物图

    Figure 20.  Two sets of processed physical systems.

    图 21  未优化系统的输入电阻抗与谐振频率的测量与对比 (a) 测量过程; (b) 测量结果; (c) 仿真导纳曲线图

    Figure 21.  Measurement and comparison of input impedance and resonant frequency of unoptimized systems: (a) Measurement process; (b) measurement results; (c) simulation admittance curve.

    图 22  优化后系统的输入电阻抗与谐振频率的测量与对比 (a) 测量过程; (b) 测量结果; (c) 仿真导纳曲线图

    Figure 22.  Measurement and comparison of input impedance and resonant frequency of the optimized system: (a) Measurement process; (b) measurement results; (c) simulation admittance curve.

    图 23  振幅分布的测量 (a) 测量过程; (b) 未优化系统的测量结果; (c) 优化后系统的测量结果

    Figure 23.  Measurement of amplitude distribution: (a) Measurement process; (b) measurement results of non-optimized systems; (c) measurement results of the optimized system.

    图 24  加工的两套系统的辐射面位移振幅对比图

    Figure 24.  Displacement amplitude comparison diagram of the radiation surface of the two systems processed.

    表 1  系统的材料和结构参数表

    Table 1.  Material and structural parameter table of the system.

    部件 材料属性 形状 大端半径(长)/mm 小端半径(宽)/mm 高度/mm
    换能器前盖板 Aluminum 6063-T83 等截面圆柱 25 25 56
    换能器压电陶瓷片(两片) PZT-4 等截面圆环 25 25 6
    换能器后盖板 Aluminum 6063-T83 等截面圆柱 25 25 56
    复合变幅杆圆柱部分 Aluminum 6063-T83 等截面圆柱 25 25 77
    复合变幅杆圆锥部分 Aluminum 6063-T83 圆锥 25 20 45
    工具头 Aluminum 6063-T83 长方体 180 106 111
    DownLoad: CSV
    Baidu
  • [1]

    周光平, 梁明军, 王家宣 2004 声学技术 2004 183Google Scholar

    Zhou G P, Liang M J, Wang J X 2004 Tech. Acous. 2004 183Google Scholar

    [2]

    Mori E, Itoh K, Imamura A 1995 J. Acous. Soc. Jpn. 51 455Google Scholar

    [3]

    Lin S 1995 Appl. Acous. 44 249Google Scholar

    [4]

    Ren S C 1983 Acta Acus. 1 152Google Scholar

    [5]

    Lin S 2009 IEEE Trans. Ultra. Ferr. Freq Cont. 56 1990.Google Scholar

    [6]

    俞宏沛 1994 声学与电子工程 1994 9

    Yu H P 1994 Acous. Elec. Engi. 1994 9

    [7]

    周利生 1993 声学与电子工程 1993 28

    Zhou L S 1993 Acous. Elec. Engi. 1993 28

    [8]

    周利生 1993 声学与电子工程 1993 16

    Zhou L S 1993 Acous. Elec. Engi. 1993 16

    [9]

    林书玉, 张福成 1992 声学学报 1992 451

    Lin S Y, Zhang F C 1991 J. Acous. 1992 451

    [10]

    林书玉, 张福成 1991 应用声学 1991 10Google Scholar

    Lin S Y, Zhang F C 1991 Appl. Acous. 1991 10Google Scholar

    [11]

    林书玉, 张福成, 郭孝武 1991 声学学报 1991 91Google Scholar

    Lin S Y, Zhang F C Guo X W 1991 J. Acous. 1991 91Google Scholar

    [12]

    Lucas M, Smith A C 1997 J. Vibr. Acous. 119 410Google Scholar

    [13]

    Cardoni A, Lucas M 2002 Ultrasonics 40 365Google Scholar

    [14]

    Kumar R D, Rani M R, Elangovan S 2014 Appl. Mech. Mater. 592-594 859Google Scholar

    [15]

    Yeon J L, Muhammad B S, Dong S P 2019 MATEC Web Conf. 257 1Google Scholar

    [16]

    Adachi K, Ueha S 1990 J. Acous. Soc. Am. 87 208Google Scholar

    [17]

    Thanh H N, Quang T Q, Cong L T 2017 IOP Conference Series:Materials Science and Engineering 241 1Google Scholar

    [18]

    Rani M R, Prakasan K, Rudramoorthy R 2014 Int. J. Des. 5 344Google Scholar

    [19]

    程存弟 1991 应用声学 10 44Google Scholar

    Chen C D 1991 Appl. Acous. 10 44Google Scholar

    [20]

    林书玉, 张福成 1992 声学技术 11 24Google Scholar

    Lin S Y, Zhang F C 1992 Tech. Acous. 11 24Google Scholar

    [21]

    梁召峰, 周光平, 莫喜平, 张亦慧, 李正中 2008 机械科学与技术 27 334Google Scholar

    Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2008 Mech. Sci. Tech. 27 334Google Scholar

    [22]

    梁召峰, 周光平, 莫喜平, 李正中 2009 工程设计学报 16 200Google Scholar

    Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2009 Journal of Engineering Design 16 200Google Scholar

    [23]

    成桢, 郭建中 2010 声学技术 29 103

    Chen Z, Guo J Z 2010 Tech. Acous. 29 103

    [24]

    赵甜甜, 林书玉, 段祎林 2018 67 024303Google Scholar

    Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 024303Google Scholar

    [25]

    王莎, 林书玉 2019 68 173Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 173Google Scholar

    [26]

    Wang S, Lin S Y 2019 Ultrasonics 99 105954.Google Scholar

    [27]

    Lin J Y, Lin S Y 2020 Crystals 10 1Google Scholar

    [28]

    Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617 [赵言诚, 赵芳, 苑立波 2006 哈尔滨工程大学学报 2006 617]Google Scholar

    Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617Google Scholar

    [29]

    Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517 [赵芳, 苑立波 2006 2 517]Google Scholar

    Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517Google Scholar

    [30]

    何姣 2013 博士学位论文 (昆明: 云南师范大学)

    He J 2013 Ph. D. Dissertation (Kunming: Yunnan Normal University

    [31]

    魏琦, 程营, 刘晓峻 2011 60 124301Google Scholar

    Wei Q, Cheng Y, Liu X J 2011 Acta Phys. Sin. 60 124301Google Scholar

  • [1] Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong. First-principles calculations of point defect migration mechanisms in InP. Acta Physica Sinica, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] Zuo Xin-Yi, Lei Zhao-Kang, Wu Yao-Rong, Wang Cheng-Hui. A model of coupled oscillation of bubble cluster in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2024, 73(15): 154301. doi: 10.7498/aps.73.20240606
    [3] Xu Long, Wang Yao. Simulation of dynamic process of double bubble coupled acoustic cavitation. Acta Physica Sinica, 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [4] Wang Fu, Zhou Yi, Gao Shi-Xin, Duan Zhen-Gang, Sun Zhi-Peng, Wang Jun, Zou Yu, Fu Bao-Qin. Molecular dynamics study of effects of point defects on thermal conductivity in cubic silicon carbide. Acta Physica Sinica, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [5] Effects of point defects on thermal conductivity in cubic silicon carbide: A molecular dynamics study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211434
    [6] Li Ming-Yang, Zhang Lei-Min, Lv Shasha, Li Zheng-Cao. Effects of ion irradiation and oxidation on point defects in IG-110 nuclear grade graphite. Acta Physica Sinica, 2019, 68(12): 128102. doi: 10.7498/aps.68.20190371
    [7] Xie Xiu-Hua, Li Bing-Hui, Zhang Zhen-Zhong, Liu Lei, Liu Ke-Wei, Shan Chong-Xin, Shen De-Zhen. Point defects: key issues for II-oxides wide-bandgap semiconductors development. Acta Physica Sinica, 2019, 68(16): 167802. doi: 10.7498/aps.68.20191043
    [8] Mo Run-Yang, Wang Cheng-Hui, Hu Jing, Chen Shi. Nonlinear acoustic response of two bubble oscillators. Acta Physica Sinica, 2019, 68(14): 144302. doi: 10.7498/aps.68.20190408
    [9] Sun Wei-Bin, Wang Ting, Sun Xiao-Wei, Kang Tai-Feng, Tan Zi-Hao, Liu Zi-Jiang. Defect states and vibration energy recovery of novel two-dimensional piezoelectric phononic crystal plate. Acta Physica Sinica, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [10] Zhao Tian-Tian, Lin Shu-Yu, Duan Yi-Lin. Suppression of lateral vibration in rectangular ultrasonic plastic welding tool based on phononic crystal structure. Acta Physica Sinica, 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [11] Wang Cheng-Hui, Mo Run-Yang, Hu Jing. Acoustic response of bubbles inside a cylindrical cavitationbubble cluster generated by low-frequency ultrasound. Acta Physica Sinica, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [12] Zhang Yue, Zhao Jian, Dong Peng, Tian Da-Xi, Liang Xing-Bo, Ma Xiang-Yang, Yang De-Ren. Effects of dopants on the growth of oxidation-induced stacking faults in heavily doped n-type Czochralaki silicon. Acta Physica Sinica, 2015, 64(9): 096105. doi: 10.7498/aps.64.096105
    [13] Wang Cheng-Hui, Mo Run-Yang, Hu Jing, Chen Shi. Coupled oscillation of bubbles in a spherical bubble cluster. Acta Physica Sinica, 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [14] Ji Chuan, Xu Jin. Effect of point defects on copper precipitation in heavily boron-doped Czochralski silicon p/p+ epitaxial wafer. Acta Physica Sinica, 2012, 61(23): 236102. doi: 10.7498/aps.61.236102
    [15] Cao Yong-Jun, Tan Wei, Liu Yan. Coupling characteristics of point defect modes in two-dimensional magnonic crystals. Acta Physica Sinica, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [16] Wei Qi, Cheng Ying, Liu Xiao-Jun. The influence of point defect array on directional emission of phononic crystal waveguide. Acta Physica Sinica, 2011, 60(12): 124301. doi: 10.7498/aps.60.124301
    [17] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [18] Ma Xin-Guo, Jiang Jian-Jun, Liang Pei. Theoretical study of native point defects on anatase TiO2 (101) surface. Acta Physica Sinica, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [19] Yi Chen-Hong, Mu Qing-Sun, Miao Tian-De. The DEM simulation for two-dimension granular system with point defects. Acta Physica Sinica, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [20] Li Xiao-Chun, Yi Xiu-Ying, Xiao Qing-Wu, Liang Hong-Yu. Defect states in three-component phononic crystal. Acta Physica Sinica, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
Metrics
  • Abstract views:  1905
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  02 January 2024
  • Accepted Date:  26 January 2024
  • Available Online:  30 January 2024
  • Published Online:  20 April 2024

/

返回文章
返回
Baidu
map