-
Through comparative investigation on the growth of oxidation-induced stacking faults (OSFs) in heavily antimony (Sb)-doped and phosphorus (P)-doped Czochralaki (Cz) silicon wafers with almost the same resistivity, effects of dopants on the growth of OSF in heavily doped n-type Cz silicon are studied experimentally. Moreover, the influences of Sb and P atoms on the recombination of self-interstitials and vacancies are also explored on the basis of the first-principles calculations. It is shown experimentally that all the OSF lengths are almost identical regardless of the type and density of OSF nucleation centers, such as copper precipitates and mechanical scratches etc.. However, it is found that the OSF length of heavily Sb-doped Cz silicon wafer is larger than that of heavily P-doped Cz silicon wafer under the same oxidation condition. Essentially, the OSFs are formed by the aggregation of silicon self-interstitials refleased at the Si/SiO2interface during the oxidation. Therefore, a longer OSF implies that a higher quantity of silicon self-interstitials remains after the recombination of vacancies and silicon self-interstitials in the heavily Sb-doped Cz silicon wafer. The first-principles calculations based on density functional theory (DFT) indicate that Sb atoms combine with vacancies more readily than P atoms. This is actually due to the fact that Sb has a much larger atomic size than P. In other words, as compared with P atoms, the Sb atoms are the moreflefficient vacancy-trapping centers, thus retarding the recombination of vacancies and silicon self-interstitials. Consequently, the silicon self-interstitials remain after recombination with the vacancies that are much more in heavily Sb-doped Cz silicon wafer than in heavily P-doped counterpart when undergoing the same oxidation. In turn, the OSFs in heavily Sb-doped silicon wafers are relatively longer.
-
Keywords:
- dopants /
- point defects /
- OSF /
- Czochralaki silicon
[1] Fair R B 1981 J. Electrochem. Soc.: Solid-State Sci. Technol. 128 1360
[2] Leroy B 1979 J. Appl. Phys. 50 7996
[3] Hu S M 1974 J. Appl. Phys. 45 1567
[4] Tan T Y, Gosele U 1982 Appl. Phys. Lett. 40 616
[5] Murarka S P 1977 Phys. Rev. B 16 2849
[6] Dornberger E, Graf D, Suhren M 1997 J. Cryst. Growth 180 343
[7] Sinno T, Susanto H, Brown R A 1999 Appl. Phys. Lett. 75 1533
[8] Porrini M, Voronkov V V, Falster R 2006 Mater. Sci. Eng. B 134 185
[9] Voronkova V V, Falster R 2002 J. Electrochem. Soc. 149 167
[10] Válek L, Lysáček D, Šik J 2007 J. Electrochem. Soc. 154 904
[11] Fair R B, Carim A 1982 J. Electrochem. Soc.: Solid-State Sci. Technol. 129 2319
[12] Wijaranakula W 1991 J. Electrochem. Soc. 138 1131
[13] Chichibu S, Harada T, Matsumoto S 1988 J. J. Appl. Phys. 22 1543
[14] Sun Y C 1984 Semiconductor Testing Technology (first edition) (Beijing: Metallurgical Industry Press) p89 (in Chinese) [孙以材 1984 半导体测试技术(第一版)(北京: 冶金工业出版社) 第89页]
[15] Hu S M 1977 J. Vac. Sci. Technol. 14 17
[16] Sandersa I R, Dobsona P S 1969 Philo. Mag. 20 881
[17] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
-
[1] Fair R B 1981 J. Electrochem. Soc.: Solid-State Sci. Technol. 128 1360
[2] Leroy B 1979 J. Appl. Phys. 50 7996
[3] Hu S M 1974 J. Appl. Phys. 45 1567
[4] Tan T Y, Gosele U 1982 Appl. Phys. Lett. 40 616
[5] Murarka S P 1977 Phys. Rev. B 16 2849
[6] Dornberger E, Graf D, Suhren M 1997 J. Cryst. Growth 180 343
[7] Sinno T, Susanto H, Brown R A 1999 Appl. Phys. Lett. 75 1533
[8] Porrini M, Voronkov V V, Falster R 2006 Mater. Sci. Eng. B 134 185
[9] Voronkova V V, Falster R 2002 J. Electrochem. Soc. 149 167
[10] Válek L, Lysáček D, Šik J 2007 J. Electrochem. Soc. 154 904
[11] Fair R B, Carim A 1982 J. Electrochem. Soc.: Solid-State Sci. Technol. 129 2319
[12] Wijaranakula W 1991 J. Electrochem. Soc. 138 1131
[13] Chichibu S, Harada T, Matsumoto S 1988 J. J. Appl. Phys. 22 1543
[14] Sun Y C 1984 Semiconductor Testing Technology (first edition) (Beijing: Metallurgical Industry Press) p89 (in Chinese) [孙以材 1984 半导体测试技术(第一版)(北京: 冶金工业出版社) 第89页]
[15] Hu S M 1977 J. Vac. Sci. Technol. 14 17
[16] Sandersa I R, Dobsona P S 1969 Philo. Mag. 20 881
[17] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
Catalog
Metrics
- Abstract views: 7267
- PDF Downloads: 830
- Cited By: 0